首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
纤维束张紧力缠绕的复合材料厚环固化成型以后,再抽出缠绕芯轴形成空心环,这一过程称为内孔卸载。本文作者在飞轮多环套装初应力分析和张紧力缠绕飞轮初应力分析的基础上,进一步给出了计及纤维束张紧力影响和复合材料厚环内孔卸载影响的多环过盈套装的简化分析,并给出了计算复合材料飞轮总体初应力场和变形场的公式。算例分析表明:内孔卸载后,纤维束缠绕的复合材料厚环的应力场和变形场均有明显的变化;和多厚环过盈套装的方法结合起来装配飞轮,可以有效地增大径向压应力,缓和环向应力;内孔卸载使得装配中的真实过盈量相对初始设定过盈量有较大的改变,必须充分考虑。  相似文献   

2.
利用平面应力型全弹性模型的思想(即将纤维束张紧力缠绕看成多层复合材料薄环连续过盈装配的过程) , 建立了三维纤维束张紧力缠绕复合材料飞轮初应力分析模型, 并给出了基于面-面接触算法求解张紧力缠绕复合材料飞轮初应力的三维数值方法。算例分析表明, 三维数值分析得到的飞轮的环向初应力及径向初始压应力(数值) 均略低于平面应力模型的结果, 且这种差距随着飞轮轴向长度的增加而缓慢增大; 三维分析证实了平面应力模型关于张紧力缠绕复合材料飞轮的初应力分析有足够的精度。最后给出了三维模型轴向效应的表征方法。  相似文献   

3.
采用多环过盈装配是解决复合材料飞轮径向强度过低的有效途径之一。本文作者采用平面应力简化模型,提出了计及过盈配合后变形导致实际过盈量增大计算飞轮套装后的初终应力分布的方法;提出了基于叠加原理计算多环过盈装配旋转飞轮应力的方法;提出了保证飞轮旋转时配合界面不脱离的相关临界转速的概念和计算方法。算例分析表明:过盈配合后的变形对初终应力的影响不能忽略;过盈量和套装环数与飞轮的初终应力和相关临界转速有密切的关系。  相似文献   

4.
开展纤维缠绕结构缠绕与固化后残余应力评估是开展缠绕工艺优化设计、实现服役前预应力设计的重要前提。本文采用干法缠绕工艺,基于钢芯模和尼龙6(PA6)芯模分别制备了恒定张力(40 N)、内松外紧(20 N-40 N-60 N)和内紧外松(60 N-40 N-20 N)3种不同张力制度的复合材料缠绕圆筒,通过测试切割过程应变释放量与回弹变形对内部残余应力进行对比分析。借助生死单元法,建立了复合材料圆筒的逐层缠绕过程分析模型,模拟缠绕后残余应力分布;并基于CHILE(Tg)本构模型,开展了复合材料圆筒固化过程模拟,预测固化后残余应力及切割后回弹变形。研究表明:固化应力与缠绕张力均对总残余应力产生贡献,但由于固化过程剩余缠绕张力进一步放松,固化后总残余应力水平低于缠绕残余应力与固化应力之和。固化过程不会改变缠绕张力对最终残余应力分布的影响;缠绕张力对总残余应力的影响程度与芯模材质相关,芯模热变形越大,缠绕张力的影响越弱。当采用相同芯模时,内松外紧(20 N-40 N-60 N)张力制度产生的切割回弹角最小,内紧外松(60 N-40 N-20 N)张力制度产生的回弹角最大;当采用相同张力制度时,P...  相似文献   

5.
分别基于平面应力型全弹性模型和三维数值模型建立了计算复合材料飞轮破坏转速的二维和三维算法。这两个算法均采用了正交各向异性材料的最大拉应力(材料主方向) 准则, 其中三维算法还采用了两种强度判据, 即基于轴向大部分区域每层应力的平均值判据和轴向边界区域每层应力的最大值判据。对张紧力缠绕的3个实验复合材料飞轮成功实施了高速旋转破坏实验, 破坏均发生在径向强度最弱的飞轮与金属芯轴的界面处。实验结果表明, 飞轮的实际破坏转速与理论破坏转速十分接近, 证实本文中建立的二维和三维算法是可靠的;二维算法得到的理论破坏转速偏高, 而飞轮的实际破坏转速落在三维算法分别按最大值判据和平均值判据得到的两个理论破坏转速之间, 说明三维算法的精度更高。  相似文献   

6.
复合材料纤维张力缠绕预应力场动态特性   总被引:2,自引:0,他引:2       下载免费PDF全文
复合材料纤维张力缠绕技术通过提高纤维的张力水平可充分发挥纤维高强、高模优势,在成型过程中对结构进行预紧,成为解决高速转动部件径向变形大、界面强度低等问题新的有效途径。将每一层纤维的张力缠绕等效为一个含预应力复合材料薄环的叠加,基于正交各向异性复合材料缠绕层和各向同性金属芯模弹性变形理论,建立了纤维张力缠绕力学解析模型,得到芯模和缠绕层预应力场随缠绕层数及缠绕张力的变化规律,并通过复合材料纤维张力工艺试验验证了力学解析模型的正确性。研究发现了纤维张力缠绕中预应力“饱和”现象,并确定了影响张力缠绕预应力场的两个主要参数:缠绕层环径向刚度比Eθ/Er和张力大小T(r),为复合材料纤维张力缠绕成型工艺提供理论支撑。  相似文献   

7.
纤维缠绕角度、纤维缠绕层厚度及碳/玻纤维混杂比是影响内衬聚偏氟乙烯(PVDF)热塑层的纤维增强热固性复合材料缠绕管径向平压性能的重要因素,其性能直接决定复合材料缠绕管产品掩埋深度和抗碾压能力。将PVDF颗粒经挤出机制成PVDF管,然后以表面喷砂处理后的PVDF管为内衬芯管,采用湿法缠绕技术制备不同结构参数的复合材料缠绕管。利用管平行板外载平压性能测试方法,测试了3种结构参数对复合材料管径向平压性能的影响,并分析其破坏模式与失效机理。结果表明,随缠绕层厚度的增加,径向压缩强度和径向压缩模量逐渐增大;随着缠绕角度的增大,径向压缩强度和径向压缩模量先增大后减小;另外,随着碳/玻纤维混杂比的提高,复合材料缠绕管的压缩强度和压缩模量相应增加。  相似文献   

8.
缠绕张力作为缠绕工艺中的关键因素,其合理设计直接影响制品性能。针对缠绕张力的设计,提出缠绕张力算法。基于各向异性缠绕层弹性变形及各向同性内衬厚壁筒理论,给出外压作用下缠绕层的径向应力及环向应力;在弹性范围内采用应力叠加原理建立剩余张力与缠绕张力之间的解析算法。结合三种典型的张力缠绕模型,给出剩余张力具体关系式;分析等剩余张力,得到不同特例下的剩余张力解析公式。依据该解析算法研究芯模内、外径比及张力锥度系数对各向同性材料缠绕层剩余张力分布的影响,表明芯模内、外径比与锥度系数变化对缠绕层剩余张力分布有显著影响,且该文算法简单、合理、可靠;对各向异性复合材料缠绕层等剩余张力分析,其结果与现有网格理论结果一致,且该文缠绕张力上下层变化平缓,易于张力控制的实现。  相似文献   

9.
复合材料飞轮的三维应力分析   总被引:18,自引:6,他引:12       下载免费PDF全文
高速旋转的飞轮在给定外径和质量的情况下,轮缘采用先进的碳纤维缠绕,提高飞轮的转速,从而增大飞轮的储能密度,解决了飞轮轮缘因高速旋转而断裂破坏的问题。本文采用三维实体元分析计算复合材料飞轮工作时的应力分布,为安全合理设计复合材料飞轮提供依据。  相似文献   

10.
纤维缠绕厚壁柱形管道或容器在缠绕张力作用下会使缠绕纤维层的应力状态不断变化,形成沿壁厚力学性能非均匀的结构。依据缠绕过程中的纤维束应力状态分析和纤维束本构关系,获得了纤维体积含量与所受应力状态的关系。基于正交各向异性本构关系和双层筒模型的离散叠加法,建立了给定缠绕张力确定纤维缠绕厚壁柱形结构剩余张力的计算方法,并计算了等张力缠绕纤维层的纤维体积含量沿壁厚的分布。利用Tsai-Wu失效准则研究了纤维体积含量非均匀的厚壁柱形结构的纤维层强度。研究表明:缠绕工艺使内层纤维体积含量和强度均略高于外层,纤维缠绕厚壁柱形结构的强度分析和设计时应考虑这种影响;利用变化的缠绕张力设计可以实现强度比沿壁厚的均匀分布。  相似文献   

11.
厚壁复合材料管纤维缠绕张力的神经网络设计方法   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种纤维缠绕厚壁复合材料管的张力优化设计方法。介绍了纤维缠绕控制系统的工作原理, 并讨论了缠绕厚壁复合材料管成型质量的影响因素。针对厚壁复合材料管纤维缠绕过程, 利用弹性叠加原理建立了计算缠绕张力导致复合材料管残余内应力变化的模型和方法。分别比较了利用现有恒张力、 恒力矩和锥度张力三种常规模式缠绕厚壁复合材料管的内应力分布特性。设计了一种独特的神经网络结构, 并通过误差反向传播实现了对纤维缠绕张力的优化设计。以实验验证说明神经网络收敛优化过程的主要机制, 结果表明, 通过该神经网络优化的纤维缠绕张力能满足特殊内应力(如等应力)分布设计的需要。  相似文献   

12.
The objective of this research was to analyse the differences in the dissipated energy under uniaxial tension and biaxial tension–compression load of fibre reinforced concretes using the Wedge Splitting Test. Under biaxial load the specimens were subjected to compressive stress ratios from 10% to 50% of the concrete compressive strength perpendicular to the direction of the tensile load.Under biaxial tension–compression load the energy dissipation capacity of the specimens decreases compared to the uniaxial tension load case on average 20–30%. It is believed that the decrease is a result of the damage mechanism of the concrete matrix and deterioration of the fibre–matrix and/or aggregate–cement paste interfaces in case the section is additionally loaded with compression stresses. This indicates that dimensioning of concrete elements under biaxial stress states using material parameters obtained from tests conducted on specimens under uniaxial tensile load is unsafe and could potentially lead to a non-conservative design.In the second part of this paper the extent of the fracture process zone under uniaxial tension and biaxial tension–compression load will be examined with the Acoustic Emission technique and the reasons for decrease of the energy dissipation capacity under biaxial load will be further discussed.  相似文献   

13.
A two-dimensional axisymmetric winding model for wound rolls of thin web is developed. The model accounts for radial and axial displacements and radial, circumferential, axial and shear stresses. The roll build-up is modeled as an incremental accretion process. The material behaviour of the roll is considered as hyperelastic, orthotropic and radially nonlinear. The numerical solution is developed using the finite element method and the total Lagrangian formulation. The model is applied to the winding of paper rolls. It is shown that centrifugal forces may considerably affect the resulting stress distributions. For nonzero Poisson’s ratios significant edge effects in the roll stresses are found. In particular, high shear stresses and shear stress gradients are discovered in the vicinity of the core near the roll ends. A remarkable stress leveling phenomenon is found where the effect of a non-constant incoming web tension is evened out in the roll axial direction.  相似文献   

14.
We use molecular mechanics simulations with the tight-binding potential to study local and global instabilities in initially defect-free nanosize rectangular prismatic specimens of gold deformed in tension/compression and simple tension/compression. Whereas in simple tension/compression atoms on end faces are constrained to move axially but are free to move laterally and the cross-sectional dimensions of end faces can change, in tension/compression all three components of displacements of atoms on end faces are prescribed and the cross-section of an end face does not change. The three criteria used to delineate local instabilities in a specimen are: (i) a component of second-order spatial partial derivatives of the displacement field has large value relative to its average value in the body, (ii) the minimum eigenvalue of the Hessian of the potential energy of an atom is negative, (iii) a relatively high value of the common neighborhood parameter. A specimen becomes globally unstable when its potential energy decreases noticeably with a small increase in its deformations. It is found that the three criteria for local instability are met essentially simultaneously at the same atomic position. Deformations of interior points of a specimen are different when it is deformed in simple tension/compression from those in tension/compression. It is found that the initial unloaded configuration (or the reference configuration) of the minimum potential energy has significant in-plane stresses on the bounding surfaces and non-zero normal stresses at interior points. This initial stress distribution satisfies Cauchy’s equilibrium equations for a continuum. In deformations of a nanobar studied here, the yield stress defined as the average axial stress when the average axial stress vs. the average axial strain curve exhibits a sharp discontinuity depends upon the specimen size. It is shown possibly for the first time that deformations of the specimen are reversible if it is unloaded prior to yielding but have a permanent strain if unloaded after it has yielded. Because of residual stresses in the reference configuration, the average axial stress at yield in compression is nearly one-half of that in tension. The slope of the average axial stress vs. the average axial strain curve during unloading after it has yielded is the same as that during initial loading up to the yield point.  相似文献   

15.
Residual stresses in chemically deposited pyrolytic boron nitride (PBN) crucibles caused by thermal expansion anisotropy during cooling immediately following deposition are analysed. The calculations reveal that radial tension and combined tangential tension and compression exist in the crucible. The maximum stresses increase with an increase in the thickness of the crucible. Furthermore, while the outer wall of the crucible always shrinks upon cooling, the inner wall may expand, due to the residual stress states, resulting in a negative effective thermal expansion coefficient in the tangential direction. The influence of the PBN attachment to the mandrel on which it is deposited is also considered. Specifically, the radial tensile stress in the crucible is shown to increase due to this attachment, which in turn, enhances the delamination of the crucible.  相似文献   

16.

We use the particle flow code PFC3D to simulate the triaxial compression of sandstone under various radial stresses and loading strain rates to determine the triaxial stress-strain curves, crack propagation path, and contact forces to investigate the failure process of sandstone. We analyze the energy and damage evolution during triaxial compression. The results indicate that the tension and shear-induced cracks increase with the increase of radial stress under the same loading strain rate. Both normal and tangential contact forces exhibit strong anisotropy and increase with radial stress and strain rate. The normal contact force has an approximately symmetrical distribution with respect to the horizontal plane, whereas the tangential contact force has an approximately symmetrical distribution with respect to the axis. For the characteristics of the energy evolution, the boundary energy density, strain energy density, and dissipated energy density all increase linearly with the radial stress, and the boundary energy density increases at the fastest rate, followed by the strain energy density and dissipated energy density. In the post-peak stage the primary energy consumption is the dissipated energy. After that, in the remaining stage the strain energy decreases gradually. By analyzing the evolution of the damage variables in the prepeak area we observed that the damage variable followed an exponential relationship with the axial strain. When the loading strain rate is constant, the damage variable corresponding to the same strain value decreases with increase of radial stress. The results indicate that the increase in radial stress delays the damage acceleration. In contrast, the effect of the loading strain rate on the damage variable is small. The findings reveal the internal structural evolution of rocks during deformation and failure.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号