首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
B4C-TiB2复相陶瓷的强韧化研究   总被引:11,自引:1,他引:10  
采用热压烧结工艺,制备B4C-TiB2复相陶瓷。结果表明,复相陶瓷的抗弯强度,断裂韧性和显向硬度受第二相TiB2颗粒的影响,其中B4C-30vol%TiB2材料的弯曲强度为725MPa,比单体B4C提高65%,B4C-45vol^TiB2材料的断裂韧性为6.7MPa.m^1/2,比单体B4C提高84%,由B4C基体和TiB2颗粒热膨胀系数不匹配导致的残余应国是B4C-Tdisplay status  相似文献   

2.
A HfB2 based ceramic matrix composite containing 20 vol.% SiC particles with 2 vol.% B4C as sintering additives was fabricated by hot-pressed sintering. The microstructure and properties, especially the thermal shock resistance of the composite were investigated. Results showed that the addition of B4C improved the powder sinterability and led to obtaining nearly full dense composite. The flexural strength and fracture toughness of the composite were 771 MPa and 7.06 MPam1/2, respectively. The thermal shock resistance tests indicated that the residual strength decreased significantly when the thermal shock temperature difference was higher than 600 °C. The large number of microcracks on the sample surface was the main reason for the catastrophic failure.  相似文献   

3.
In situ formation of TiB2 in mullite matrix through the reaction of TiO2, boron and carbon has been studied. In hot-pressed and pressureless-sintered samples, in addition to TiB2, TiC was also found to be dispersed phases in mullite matrix. However, in the case of pressurelesssintered samples, mullite/TiB2 composite with 98% relative density can be obtained through a preheating step held at 1300 °C for longer than 3 h and then sintering at a temperature above 1600 °C. Hot-pressed composite containing 30 vol% TiB2 gives a flexural strength of 427 MPa and a fracture toughness of 4.3 MPam1/2. Pressureless-sintered composite containing 20 vol% TiB2 gives a flexural strength of 384 MPa and a fracture toughness of 3.87 MPam1/2.  相似文献   

4.
Densification and mechanical properties (fracture toughness, flexural strength and hardness) of SiC–TiB2 composite were studied. Pressureless sintering experiments were carried out on samples containing 0–50 vol% of TiB2 created by in situ reaction between TiO2, B4C and carbon. Al2O3 and Y2O3 were used as sintering additives to create liquid phase and promote densification at sintering temperature of 1940 °C. The sintered samples were subsequently heat treated at 1970 °C. It was found that the presence of TiB2 serves as an effective obstacle to SiC grain growth as well as crack propagation thus increasing both strength and fracture toughness of sintered SiC–TiB2 composite. The subsequent heat treatment of sintered samples promoted the elongation of SiC matrix and further improved mechanical properties of the composite. The best mechanical properties were measured in heat-treated samples containing 12–24 vol% TiB2. The maximum flexural strength of ∼600 MPa was obtained in samples with 12 vol% TiB2 whereas the maximum fracture toughness of 6.6 MPa m1/2 was obtained in samples with 24 vol% TiB2. Typical microstructures of samples with the mentioned volume fractions of TiB2 consist of TiB2 particles (<5 μm) uniformly dispersed in a matrix of elongated SiC plates.  相似文献   

5.
Reaction sintering of TiN with B4C addition was developed to densify the composite without the application of external pressure. The process utilizes high affinity of B for Ti which leads to the formation of extremely fine highly active TiB2. The addition of 6–8 wt% B4C is sufficient to increase the sintered density to over 96% theoretical density, fracture toughness to 3.5 MPa·m1/2, flexural strength to 415 MPa, and hardness to 14 GPa. The major toughening mechanism was identified to be the crack deflection caused by the presence of hard and tough TiB2 particles. The large improvements in mechanical properties make this in situ produced composite viable material for applications requiring higher level of reliability.  相似文献   

6.
Reactive hot-press (1800-1880 °C, 30 MPa, vacuum) is used to fabricate relatively dense B4C matrix light composites with the sintering additive of (Al2O3 +Y2O3). Phase composition, microstructure and mechanical properties are determined by methods of XRD, SEM and SENB, etc. These results show that reactions among original powders B4C, Si3N4 and TiC occur during sintering and new phases as SiC, TiB2 and BN are produced. The sandwich SiC and claviform TiB2 play an important role in improving the properties. The composites are ultimately and compactly sintered owing to higher temperature, fine grains and liquid phase sintering, with the highest relative density of 95.6%. The composite sintered at 1880 °C possesses the best general properties with bending strength of 540 MPa and fracture toughness of 5.6 MPa m1/2, 29 and 80% higher than that of monolithic B4C, respectively. The fracture mode is the combination of transgranular fracture and intergranular fracture. The toughening mechanism is certified to consist of crack deflection, crack bridging and pulling-out effects of the grains.  相似文献   

7.
B4C based ceramics composites with 0–25 mol% CrB2 were fabricated by pressureless sintering in the temperature range 1850°C to 2030°C. The CrB2 addition enhanced the densification of B4C due to the CrB2–B4C eutectic liquid phase formation. Both a high strength of 525 MPa and a modest fracture toughness of 3.7 MPa m1/2 were obtained for the B4C–20 mol% CrB2 composite with a high-relative density of 98.1% after sintering at 2030°C. The improvement in fracture toughness is thought to result from the formation of microcracks and the deflection of propagating cracks resulting from the thermal expansion mismatch of CrB2 and B4C.  相似文献   

8.
The microstructure and mechanical properties of hot-pressed yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) ceramics containing up to 30 vol % TiC particles were studied. Adding TiC particles to Y-TZP improved the bending strength and fracture toughness. With 20 vol% TiC particles the maximum bending strength and fracture toughness reached 1073±30.4 MPa and 14.56±0.25 MPa m1/2, respectively. The residual tensile stress induced by the thermal expansion difference between ZrO2 and TiC must have inhibited the tetragonal-monoclinic transformation. The stress-induced phase transformation was therefore not the dominant toughening mechanism. High-densities of dislocations within TiC particles and microcracking were detected by TEM. The improved toughness of the materials is considered to be the result of crack deflection, crack bowing of TiC particles and microcracking toughening of ZrO2.  相似文献   

9.
The objective of the present investigation was to study the effect of TiB2 addition on sintering behavior and mechanical properties of pressureless-sintered B4C ceramic. Different amounts of TiB2, mainly 5 t0 30 wt.% were added to the base material. Pressureless sintering was conducted at 2,050 and at 2,150 °C. Addition of 30 wt.% TiB2 and sintering at 2,150 °C resulted in improving the density of the samples to about 99% of theoretical density. The composite samples exhibited very good mechanical properties (hardness, flexural strength and fracture toughness). As the amount of TiB2 was increased further, the mechanical properties were reduced, except for the fracture toughness, apparently due to too much TiB2 in the specimen.  相似文献   

10.
Monolithic B4C, TiB2 and B4C-TiB2 particulate composites were consolidated without sintering additives by means of pulsed electric current sintering in vacuum. Sintering studies on B4C-TiB2 composites were carried out to reveal the influence of the pressure loading cycle during pulsed electrical current sintering (PECS) on the removal of oxide impurities, i.e. boron oxide and titanium oxide, hereby influencing the densification behavior as well as microstructure evolvement. The critical temperature to evaporate the boron oxide impurities was determined to be 2000 °C. Fully dense B4C-TiB2 composites were achieved by PECS for 4 min at 2000 °C when applying the maximum external pressure of 60 MPa after volatilization of the oxide impurities, whereas a relative density of 95-97% was obtained when applying the external pressure below 2000 °C. Microstructural analysis showed that B4C and TiB2 grain growth was substantially suppressed due to the pinning effect of the secondary phase and the rapid sintering cycle, resulting in micrometer sized and homogeneous microstructures. Excellent properties were obtained for the 60 vol% TiB2 composite, combining a Vickers hardness of 29 GPa, a fracture toughness of 4.5 MPa m1/2 and a flexural strength of 867 MPa, as well as electrical conductivity of 3.39E+6 S/m.  相似文献   

11.
Abstract

An in situ 5 vol.-% TiB2/2014 composite was prepared by an exothermic reaction of K2TiF6, KBF4 and Al melts. The effect of introduction of in situ formed TiB2 particles on the squeeze-casting formability of the composite was discussed. The microstructural evolution and changes in the mechanical properties of the composite at different squeeze pressures were investigated. The results showed that a pouring temperature of 710°C, a die temperature of 200°C and a squeeze pressure of 90 MPa were found to be sufficient to get the qualified squeeze cast and maximum mechanical properties for an Al 2014 alloy. However, the pouring temperature, die temperature and squeeze pressure need to be increased to 780°C, 250°C and 120 MPa for the composite to get the qualified squeeze cast and maximum mechanical properties as a result of the effect of introduction of in situ formed TiB2 particles on the solidification process, plasticity and fluidity of the composite. The microstructural refinement, elimination of casting defects such as shrinkage porosities and gas porosities and improved distribution of TiB2 particles in the case of the composite result when pressure was applied during solidification. Compared with the gravity-cast composite, the tensile strength, yield strength and elongation of the squeeze-cast composite at 120 MPa increased by 21%, 16% and 200%.  相似文献   

12.
ZrB2-SiC ultra-high temperature ceramic composites reinforced by nano-SiC whiskers and SiC particles were prepared by microwave sintering at 1850°C. XRD and SEM techniques were used to characterize the sintered samples. It was found that microwave sintering can promote the densification of the composites at lower temperatures. The addition of SiC also improved the densification of ZrB2-SiC composites and almost fully dense ZrB2-SiC composites were obtained when the amount of SiC increased up to 30vol.%. Flexural strength and fracture toughness of the ZrB2-SiC composites were also enhanced; the maximum strength and toughness reached 625 MPa and 7.18 MPa·m1/2, respectively.  相似文献   

13.
The effect of B4C on the densification, microstructure and mechanical properties of pressureless sintered Al2O3-B4C composites have been studied. Sintering was performed without sintering additives with varying B4C content from 0–40 vol %. Up to 20 vol % B4C, more than 97% theoretical density was always obtained when sintered at 1850 °C for 60 min. On increasing the sintering time from 30–120 min, there was no change in density. The result of X-ray diffraction analysis showed that no reaction occurred between Al2O3 and B4C. The grain growth of Al2O3 was inhibited by B4C particles pinned at the grain boundary and the grain-boundary drag effect. The critical amount of B4C to drag the grain boundary migration effectively was believed to occur at 10 vol % B4C sintered at 1850 °C for 60 min. The maximum three-point flexural strength was found to be 550 MPa for the specimen containing 20 vol % B4C, and the maximum microhardness was 2100 kg mm–2 for 30 vol % B4C specimen.  相似文献   

14.
ZrB2-SiC ultra-high temperature ceramic composites reinforced by nano-SiC whiskers and SiC particles were prepared by microwave sintering at 1850°C. XRD and SEM techniques were used to characterize the sintered samples. It was found that microwave sintering can promote the densification of the composites at lower temperatures. The addition of SiC also improved the densification of ZrB2-SiC composites and almost fully dense ZrB2-SiC composites were obtained when the amount of SiC increased up to 30vol.%. Flexural strength and fracture toughness of the ZrB2-SiC composites were also enhanced; the maximum strength and toughness reached 625 MPa and 7.18 MPa·m1/2, respectively.  相似文献   

15.
本文研究了原位生成的TiC/TiB2/MoSi2三相复合材料的一种新的显微结构及其对力学性能的影响,结果表明,当热压金属Ti,B4C和MoSi2的混合粉末时,在MoSi2的基体内生成由TiC和TiB2组成的空心粒子。  相似文献   

16.
In situ formation of TiB2 in Al2O3 matrix through the reaction of TiO2, boron and carbon has been studied. In hot-pressed samples, in addition to TiB2, TiC and Al2TiO5 were also found to be dispersed phases in Al2O3 matrix. However, in the case of pressureless-sintered samples, pure Al2O3/TiB2 composite with > 99% relative density can be obtained through a preheating step held at 1300°C for longer than 30 min and then sintering at a temperature above 1500°C. Pressureless-sintered composite containing 20vol% TiB2 gives a flexural strength of 580 MPa and a fracture toughness of 7.2 MPa m1/2.  相似文献   

17.
A new process of preparing particulate-reinforced ceramic composites by internal synthesis has been developed. SiC powder mixed with TiN and amorphous boron was hot-pressed above 2000° C in an argon atmosphere. The boron molar content in the mixture was designed to be more than twice that of TiN. In the process of hot-pressing, the following reaction took place between 1100 and 1700° C TiN+2B TiB2+1/2N2 The synthesis of TiB2 was followed by the densification of SiC matrix with the aid of the excess boron. The new process provides SiC matrix composites in which fine TiB2 particulates are dispersed. Compared with hot-pressed monolithic SiC, the composite containing 20 vol % TiB2 exhibits a 80% increase in fracture toughness and about the same flexural strength of 490 MPa at 20° C in air and 750 MPa at 1400° C in a vacuum.  相似文献   

18.
TiC-TiB2/Cu复合材料的自蔓延高温合成研究   总被引:4,自引:0,他引:4  
采用SHS/PHIP工艺制备了TiC-TiB2/Cu复合材料,通过实验研究了该系列复合材料的微观结构特征和力学性能.结果表明,TiC-TiB2/Cu复合材料中只有TiC、TiB2和Cu相存在;随着Cu含量的增加,燃烧温度下降,材料的颗粒尺寸变小;TiC-TiB2/Cu复合材料的相对密度、抗弯强度和断裂韧性均随Cu含量的增加呈先增后减趋势,当Cu含量为20%时强度最高为580MPa,Cu含量为40%时韧性最高为8.1MPa.m1/2.  相似文献   

19.
Dense B4C-based materials containing up to 4.9 wt % Si have been produced by hot pressing in the temperature range 1600–1700°C. In this process, the silicon melts to form a liquid phase, which improves the sinterability of the material. The boron carbide partially dissolves in the liquid Si to form silicon carbide between the B4C grains. The relative density, bending strength, Vickers hardness, and fracture toughness of the materials obtained in this study are 99.0 ± 0.1%, 584 ± 12 MPa, 39.4 ± 0.1 GPa, and 5.3 ± 0.2 MPa m1/2, respectively. The materials experience predominantly transcrystalline fracture.  相似文献   

20.
Intermetallic compound based composites (IMCs) consisting of particles of NbC and TiB2 in Ti-36 wt-%Al (NbC-TiAl and TiB2-TiAl respectively), with varying volume fraction of reinforcing particles, were produced by a plasma transferred arc process. In NbC-TiAl IMCs, the hardness and 0·2% compressive proof stress increased steadily with increasing volume fraction of NbC whereas the tensile strength was lower than that of the unreinforced TiAl regardless of the volume fraction of NbC. In TiB2-TiAl IMCs, the hardness and 0·2% compressive proof stress exhibited maximum values at a volume fraction of 5 vol.-%TiB2. The maximum tensile strength of ~500 MN m?2, which is almost twice that of the unreinforced TiAl, was obtained at a volume fraction of 5 vol.-%TiB2. The initial improvement of mechanical properties due to the addition of TiB2 was considered to be caused by the reinforcing effect of the TiB2 particles, grain refinement, and the disappearance of γ grains in 3–5 vol.-%TiB2-TiAl IMCs. The deterioration of the mechanical properties observed for a volume fraction of >5 vol.-%TiB2 may be attributed to the increase in the amount of y grains with increasing volume fraction of TiB2 particles from 7 to 15 vol.-% and the increase in coarse TiB2 particles that can act as crack initiation sites in tensile tests.

MST/3434  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号