首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of phosphorus on the stress rupture property of GH4133 alloy has been investigated and is compared with that of IN718 alloy. The GH4133 alloy is crept by dislocation movement. Phosphorus has a tendency to prolong the rupture life of some wrought superalloys by inhibiting the dislocation movement. If the phosphorus addition is too high, its effect on impairing the grain boundary cohesion overwhelms that on inhibiting the dislocation movement,and the life of the GH4133 alloy can be shortened. The two functions of inhibiting the dislocation movement and impairing the grain boundary cohesion determine that the optimum phosphorus content in the GH4133 alloy is around 0.011 wt pct. Phosphorus exhibits a greater effect on prolonging the rupture life of IN718 alloy than that of GH4133 alloy. The two alloys are crept by different mechanisms. The intergranular phosphorus-bearing phase is precipitated in the IN718 alloy, while not in the GH4133 alloy. The precipitation of the phosphorus bearing phase can balance the phosphorus segregation at the grain boundaries and allows a more remarkable effect of phosphorus on extending the rupture life of IN718 alloy.  相似文献   

2.
《材料科学技术学报》2019,35(6):1153-1164
IN718 alloy was fabricated by laser powder bed fusion (PBF) for examination of microstructure, precipitates and mechanical properties in the as-built state and after different heat treatments. The as-built alloy had a characteristic fine cellular-dendritic microstructure with Nb, Mo and Ti segregated along the interdendritic region and cellular boundary. The as-built alloys were then subjected to solution heat treatment (SHT) at 980 °C or 1065 °C for 1 h. SHT at 980 °C led to the formation of δ-phase in the interdendritic region or cellular boundary. The segregation was completely removed by the SHT at 1065 °C, but recrystallization was observed, and the carbides decorated along the grain boundaries. The as-built alloy and alloys with SHT at 980 °C and 1065 °C were two-step aged, which consisted of annealing at 720 °C for 8 h followed by annealing at 620 °C for 8 h. Transmission electron microscopy revealed the precipitation of γ' and γ” in all alloys after two-step aging, but the amount and uniformity of distribution varied. The Vickers hardness of the PBF IN718 alloy increased from 296 HV to 467 HV after direct aging. The hardness decreased to 267 HV and 235 HV after SHT at 980 °C and 1065 °C, respectively, but increased to 458 HV and 477 HV followed by aging. The evolution of Young’s modulus after heat treatment exhibited similar trend to that of hardness. The highest hardness was observed for IN718 after SHT at 1065 °C and two-step aging due to precipitation with greater amount and uniform distribution.  相似文献   

3.
The microstructure and tensile properties of selective laser melted (SLM) Inconel 718 alloy were studied in the as-printed and different heat treat conditions. The SLM as-print microstructures exhibited columnar grain structures with very fine dendritic structure with segregation of elements. Apart from the standard heat treatment, three other heat treat cycle variants were carried out in an attempt to remove the extensive segregation of elements and modify the textured grain structure of the SLM as-print microstructure. Increasing the homogenization temperature reduced the segregation and coarsened the grain structure. However, the grains still remained columnar, and the material became softer with reduction in strength. After the ageing treatment, the tensile strength improved significantly for all the heat treated samples, which is typical for precipitation hardening of IN718 alloy. The microstructures of the heat treated samples exhibited the needle shaped δ, carbides, and finely dispersed γ″, γ′ phases.  相似文献   

4.
The microstructure and mechanical behaviour of an Al-Cu-Li alloy has been examined after processing over a wide range of conditions involving severe deformation at elevated temperatures with prior or subsequent heat treatments. Dislocation cellular or subgrain structures are obtained, with varying degrees of precipitation. High strength, as well as poor ductility, can be correlated with the presence of a high density of fine T1 phase precipitates, with the dislocation substructure playing a smaller role. Careful control of processing conditions allows a suitable combination of good strength with ductility to be obtained.  相似文献   

5.
Abstract

A nickel alloy of a composition similar to that of the nickel based superalloy Inconel alloy 718 (IN718) was produced with the electron beam melting (EBM) process developed by Arcam AB. The microstructures of the as processed and heat treated material are similar to that of conventionally produced IN718, except that the EBM material showed some porosity and the δ phase did not dissolve during the solution heat treatment because the temperature of 1000°C apparently was too low. Mechanical testing of the layer structured material, parallel and perpendicular to the built layers, revealed sufficient strength in both directions. However, it showed only limited elongation when tested perpendicular to the built layers due to local agglomerations of pores. Otherwise, data for the hardness, Young’s modulus, 0·2% yield tensile strength and ultimate tensile strength match those recommended for IN718.  相似文献   

6.
对高含H2S/CO2酸性油气田封隔器材料-Inconel718镍基合金进行固溶处理和时效处理,研究不同热处理工艺条件下合金的组织、力学性能、耐蚀性能之间的关系。结果表明:随着固溶温度的升高,δ相不断溶入基体。材料经时效处理后析出第二相γ″相,硬度和强度明显高于固溶处理的样品,1000℃固溶+720℃×8h→50℃/h620℃×8h时效处理的样品硬度和强度达到最大值。高温高压H2S/CO2介质中挂片实验的结果表明,不同热处理的Inconel718合金均具有良好的耐腐蚀性能,经固溶处理的材料耐腐蚀性略优于经固溶+时效处理的材料。高温高压H2S/CO2应力腐蚀实验的结果表明,Inconel718没有发生应力腐蚀开裂迹象。综合考虑耐蚀性能和力学性能,确定Inconel718合金的最佳热处理工艺为:1000℃固溶1h+720℃×8h→50℃/h620℃×8h时效。  相似文献   

7.
《工程(英文)》2017,3(5):675-684
Selective laser melting (SLM) additive manufacturing (AM) technology has become an important option for the precise manufacturing of complex-shaped metallic parts with high performance. The SLM AM process involves complicated physicochemical phenomena, thermodynamic behavior, and phase transformation as a high-energy laser beam melts loose powder particles. This paper provides multiscale modeling and coordinated control for the SLM of metallic materials including an aluminum (Al)-based alloy (AlSi10Mg), a nickel (Ni)-based super-alloy (Inconel 718), and ceramic particle-reinforced Al-based and Ni-based composites. The migration and distribution mechanisms of aluminium nitride (AlN) particles in SLM-processed Al-based nanocomposites and the in situ formation of a gradient interface between the reinforcement and the matrix in SLM-processed tungsten carbide (WC)/Inconel 718 composites were studied in the microscale. The laser absorption and melting/densification behaviors of AlSi10Mg and Inconel 718 alloy powder were disclosed in the mesoscale. Finally, the stress development during line-by-line localized laser scanning and the parameter-dependent control methods for the deformation of SLM-processed composites were proposed in the macroscale. Multiscale numerical simulation and experimental verification methods are beneficial in monitoring the complicated powder-laser interaction, heat and mass transfer behavior, and microstructural and mechanical properties development during the SLM AM process.  相似文献   

8.
718Plus合金凭借其优异的力学性能、较高的耐温能力、良好的加工性和适宜的制造成本,有效填补了IN718和Waspaloy合金之间长期以来存在的合金空白,逐渐应用于高性能航空发动机零部件制造。详细阐述了新型高温合金718Plus的性能特点,包括化学成分、析出相、热处理制度和力学性能等。此外,还总结了718Plus合金的制造成本和航空应用情况。  相似文献   

9.
Wrought aluminum alloys can be effectively fabricated by a strain-induced, melt-activated (SIMA) process. The SIMA method involves plastic deformation of an alloy to some critical reduction point and a semi-solid heat treatment in the solid–liquid temperature range. The semi-solid heat treatment is a key process to control the semisolid microstructures. In this paper, the microscopic morphology of a cold-deformed SIMA treated Al–4Cu–Mg alloy has been investigated, and the effects of microstructural evolution, precipitation behavior and dislocation morphology on the mechanical properties are discussed. The experimental results show that the number of CuAl2 (θ phase) precipitates and the dislocation density of Al–4Cu–Mg alloy decreased gradually by the semi-solid heat treatment. Moreover, unique dislocation morphologies including helical dislocations and dislocation loops appeared and evolved to reduce the stored energy. With an increase of the holding time in the semi-solid heat treatment, the ultimate strength and yield strength decreased. The reduction of these mechanical properties of the SIMA treated Al–4Cu–Mg alloy is mainly due to the decrease of refinement strengthening, solution strengthening, and dislocation strengthening in the semi-solid heat treatment.  相似文献   

10.
The potential piston alloy Al-20Si-5Fe-3Cu-1Mg has been experimentally extruded from rapidly solidified powder, and subsequently heat treated. The effects of adding iron to the alloy on the microstructural evolution during the solution and ageing treatment subsequent to extrusion have been examined. The study shows that iron-bearing intermetallic particles modify the recrystallization behaviour of the present alloy during solution treatment at 470 °C in a complex way, through blocking the migration of recrystallized grain boundaries from particle-depleted areas, and pinning subgrain boundaries in particle-rich areas, thus leading to a partially recrystallized duplex structure in the final product. The observed two-fold role of the intermetallic particles is a consequence of their inhomogeneity in distribution, which in turn results from the processing history of the powdered alloy. It is also observed that, in the presence of the intermetallic particles, the excessive coarsening of the silicon particles dispersed in the -Al matrix (as occurs to the base alloy during the heat treatment) is lessened. The retained subgrain boundaries provide heterogeneous nucleation sites for precipitation occurring during ageing. Most of the precipitates are characterized by being associated with iron, and the precipitating behaviour of copper and magnesium in the present alloy with the iron addition is accordingly altered. The resultant tensile properties of the alloy at room and elevated temperatures have been assessed, with reference to those of the base AI-Si-Cu-Mg alloy. The results indicate that the present alloy with the iron addition has a fairly high hot strength up to a temperature of 300 °C, which offers an important improvement ensuring its reliable application in automotive engines.  相似文献   

11.
《Materials Letters》2006,60(17-18):2232-2235
The effects of P and B on the creep behavior of 718 alloys are discussed in this paper. The result implies that P and B have little effect on the γ″ and γ′ phases of the alloy, but they can enhance the grain boundary strength by segregating there, which can be of beneficial to the higher creep properties. P also may increase the grains strength through solid solution. The beneficial effect of P and B were presented in both standard IN718 alloy and DA718 alloy. Adding P and B together does a better work than adding P alone.  相似文献   

12.
The present study investigated the effect of as-built and post heat-treated microstructures of IN738LC alloy fabricated via selective laser melting process on high temperature oxidation behavior.The as-built microstructure showed fine cell and columnar structure due to high cooling rate.Ti element segrega-tion was observed in inter-cell/inter-columnar area.After post heat-treatment,the initially-observed cell structure disappeared,instead bimodal Ni3(Al,Ti)particles formed.High temperature(1273 K and 1373 K)oxidation test results showed parabolic oxidation curves regardless of temperature and initial microstructure.The as-built IN738LC fabricated via the selective laser melting process displayed oxida-tion resistance similar to or slightly better than that of IN738LC fabricated via wrought or cast process.Heat-treated SLM IN738LC,although had similar oxidation weight-gain values to those of the SLM as-built material at 1273 K,showed relatively better oxidation resistance at 1373 K.Bimodal Ni3(Al,Ti)precipitate formed in the post heat treatment changed the local chemical composition,thereby led to changes in alumina former/chromia former location and fraction on the alloy surface.It was concluded that in heat-treated IN738LC increased alumina former fraction was found,and this resulted in excellent oxidation resistance and relatively low weight-gain.  相似文献   

13.
The formation and control of Laves phase in superalloy 718 welds   总被引:6,自引:0,他引:6  
Weld heat input/cooling rate (affected by welding process, parameters, technique, tooling, etc.) was found to influence the microstructural characteristics and segregational features in alloy 718 welds, with low heat inputs proving beneficial. Laves phase formed in the interdendritic regions of the weld metals as a result of segregation. The morphology and composition of Laves phase depended strongly on heat input/cooling rate and influenced its response to subsequent homogenization post-weld heat treatment. The various factors affecting the formation and control of Laves phase in alloy 718 welds are highlighted. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
Severe plastic deformation is known to induce grain refinement and gradient structure on metals'sur-faces and improve their mechanical properties.However,the fundamental mechanisms behind the grain refinement and micromechanical properties of materials subjected to severe plastic deformation are not still well studied.Here,ultrasonic surface rolling process(USRP)was used to create a gradient microstructure,consisting of amorphous,equiaxed nano-grained,nano-laminated,ultrafine laminated and ultrafine grained structure on the surface of TB8 β titanium alloy.High energy and strain drove element co-segregation on sample surface leading to an amorphous structure during USRP processing.In situ transmission electron microscope compression tests were performed in the submicron sized pillar extracted from gradient structure and coarse grain,in order to reveal the micromechanics behavior of different grain morphologies.The ultrafine grained layer exhibited the lowest yield stress in comparison with single crystal and amorphous-nanocrystalline layers;the ultrafine grained layer and single crystal had an excellent strain hardening rate.The discrepancy among the grain sizes and activated dislocation sources led to the above mentioned different properties.Dislocation activities were observed in both compression test and microstructure evolution of USRP-treated TB8 alloy.An evolution of dislocation tangles and dislocation walls into low angle grain boundaries and subsequent high angle grain bound-aries caused the grain refinement,where twinning could not be found and no phase transformation occurred.  相似文献   

15.
Transmission electron microscopy (TEM) examinations were made on fatigued SA533-B1 low alloy steel and Type 316L stainless steel specimens with the intention to investigate the mis-orientation changes among dislocation cells and the evolution of dislocation structures. Contrary to what might be expected for the cell structures, no clear relationship between fatigue damage and the mis-orientation changes of cell walls (or subgrain boundaries) was found in the fatigued samples of SA533-B1 steel (a bcc structure); however, significant changes of dislocation structures were observed in the fatigued samples of Type 316L stainless steel (an fcc structure). This could be accounted for by their different structures as well as complicated defect structures such as subgrain boundaries, small carbides, and dislocations inhomogeneously distributed in the SA533-B1 steel. It is interesting to note that at room temperature dislocations of fatigued SS316L specimens were observed to arrange themselves on {111} slip planes, in contrast, at 300°C the dislocations tend to move from their slip planes into subgrain boundaries in the surface layers rather than in the cross sectional layers.  相似文献   

16.
采用LBW+SPF组合技术制造Inconel718合金多层夹芯板结构.为了增强多层夹芯板结构使用时的安全性,研究其热处理技术.结果表明:Inconel718合金在焊接过程产生了Nb含量较高的Laves沉淀相;超塑成形后焊缝中的Nb元素的偏析问题得了缓解;经980℃固溶30min处理后,焊缝中的δ相完全回溶母体γ相,焊缝...  相似文献   

17.
Ultrafine-grained (UFG) Cu and Cu-Zn alloy were prepared using equal-channel angular pressing (ECAP) to investigate the effects of stacking fault energy (SFE) on microstructure evolution and mechanical properties. Combining with the previous researches, the grain refinement process of ECAP is divided into three stages based on the variation of tensile strength and plasticity. According to the influences of defects on strength and ductility during plastic deformation, the three stages are discussed in detail by considering the dislocation density, grain and twin boundaries. Besides, the impact of SFE on the strength and ductility of the UFG Cu-Zn alloys are evaluated, indicating that these two mechanical properties can be improved simultaneously in the whole ECAP process either through slightly or widely adjusting the SFE. This significant effect of SFE reflects in two aspects, one is in the microstructure evolution during ECAP processing and the other is in the subsequent tensile plastic deformation, both of which can be achieved through regulating the dislocation motion via changing the SFE.  相似文献   

18.
The purpose of this investigation was to study in detail the means to quantitatively evaluate γ′ phase precipitation. Many of the mechanical properties of superalloys are directly influenced by the presence of the γ′ (gamma prime) precipitate phase dispersed in a γ matrix phase. The γ′ precipitates act as effective barriers to dislocation motion and restrict plastic deformation, particularly at high temperatures. Due to this, it is essential to accurately quantify the γ′ precipitate size, volume fraction and distribution. Investigations based on quantitative metallography and image analysis were performed on a monocrystalline nickel-base superalloy taking into consideration various γ′ precipitate sizes present in that alloy microstructure. The authors of the present paper propose a new method of quantifying the total volume fraction of the γ′ phase applying images of the microstructure with γ′ phase precipitates registered using light microscopy, scanning electron microscopy (at two different magnifications) and scanning transmission electron microscopy.  相似文献   

19.
Two-internal variable thermodynamics model is presented to investigate the evolution of microstructure and flow stress during severe plastic deformation. Previous studies have shown that due to heterogeneous distribution of dislocations during severe plastic deformation, the use of multivariable models is needed. In this regard, a two-internal variable model is presented. In the present paper, the dislocation densities in the subgrain boundaries and interiors are considered as internal variables. The model uses general laws of thermodynamics and describes the evolution of the dislocation densities on the basis of parameters such as the self-diffusion activation energy and the stacking fault energy. The model predicts the dislocation density, subgrain size and strength. To verify the model, the achieved results are compared with the experimental data.  相似文献   

20.
热处理对铸造Ti15-3合金显微组织和力学性能的影响   总被引:2,自引:1,他引:1  
借助光学显微分析、TEM和SEM分析手段研究了不同热处理工艺对Ti15-3合金显微组织和力学性能的影响。结果表明:合金在铸态时的组织特征为粗大的β相,由于合金中没有析出相的弥散强化作用,因而合金的强度低,在不同温度时效处理后,在晶内和晶界析出α相,随着时效温度和时效时间的增加,析出相不断粗化,与铸态相比,合金时效后强度大幅度提高而处伸率大幅度下降,在变形过程中,合金中的位错在析出相周围形成缠结,合  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号