首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
This paper presents a method of joining carbon-fibre plies and rigid cellular foam core with stitching for producing light-weight composite structures. After resin infusion and consolidation, the stitched sandwich panel exhibits superior damage tolerance as well as improved transverse properties due to the presence of through-thickness fibre reinforcement. First part of the paper deals with the conceptual development of a multi-needle stitching machine for rigid foams. A needle penetration model for computing the penetration forces has been reported—there is a good agreement between the experimental and theoretical penetration force-displacement curves. A number of sandwich panels with orthogonal and bias stitch orientations have been developed and examined for stitch quality with the aid of X-ray tomography. The paper also presents results from quasi-static indentation, three-point bending and transverse compression tests, on both the stitched and unstitched sandwich panels.  相似文献   

2.
The damages of 3D orthogonal woven composite circular plate under quasi-static indentation and transverse impact were tested with Materials Test System (MTS) and modified split Hopkinson bar (SHPB) apparatus. The load vs. displacement curves during quasi-static penetration and impact were obtained to study the energy absorption of the composite plate. The fluctuation of the impact stress waves has been unveiled. Differences of the load-displacement curves between the quasi-static and impact loading are discussed. This work also aims at establishing a unit-cell model to analyze the damage of composites. A user material subroutine which named VUMAT for characterizing the constitutive relationship of the 3-D orthogonal woven composite and the damage evolution is incorporated with a finite element code ABAQUS/Explicit to simulate the impact damage process of the composite plates. From the comparison of the load-displacement curves and energy absorption curves of the composite plate between experimental and FEM simulation, it is shown that the unit-cell model of the 3D woven composite and the VUMAT combined with the ABAQUS/Explicit can calculate the impact responses of the circular plate precisely. Furthermore, the model can also be extended to simulate the impact behavior of the 3D woven composite structures.  相似文献   

3.
The response and energy absorption capacity of cellular sandwich panels that comprises of silk-cotton wood skins and aluminum honeycomb core are studied under quasi-static and low velocity impact loading. Two types of sandwich panels were constructed. The Type-I sandwich panel contains the silk-cotton wood plates (face plates) with their grains oriented to the direction of loading axis and in the case of Type-II sandwich panel, the wood grains were oriented transverse to the loading axis. In both of the above cases, aluminum honeycomb core had its cell axis parallel to the loading direction. The macro-deformation behavior of these panels is studied under quasi-static loading and their energy absorption capacity quantified. A series of low velocity impact tests were conducted and the dynamic data are discussed. The results are then compared with those of quasi-static experiments. It is observed that the energy absorption capacity of cellular sandwich panels increases under dynamic loading when compared with the quasi-static loading conditions. The Type-I sandwich panels tested in this study are found to be the better impact energy absorbers for low velocity impact applications.  相似文献   

4.
In this paper, an analytical model for perforation of composite sandwich panels with honeycomb core subjected to high-velocity impact has been developed. The sandwich panel consists of a aluminium honeycomb core sandwiched between two thin composite skins. The solution involves a three-stage, perforation process including perforation of the front composite skin, honeycomb core, and bottom composite skin. The strain and kinetic energy of the front and back-up composite skins and the absorbed energy of honeycomb core has been estimated. In addition, based on the energy balance and equation of motion the absorbed energy of sandwich panel, residual velocity of projectile, perforation time and projectile velocity have been obtained and compared with the available experimental tests and numerical model. Furthermore, effects of composite skins and aluminium honeycomb core on perforation resistance and ballistic performance of sandwich panels has been investigated.  相似文献   

5.
The dynamic indentation response of several ductile metallic materials [Al(111), polycrystalline copper, Fe, and Ti6Al4V] has been investigated using a pendulum-based nano-impact test. The impact process involves repetitive contact cycles until finally coming to rest in the material. Each cycle includes four phases: acceleration, indentation, rebound, and deceleration. The dynamic indentation resistance of the metallic materials scales with their hardness determined under quasi-static conditions. However, through a one-dimensional analytical model, it has been shown that the relationship between the dynamic resistance and the depth during indentation cannot be adequately described using the quadratic relationship commonly found under quasi-static conditions. A power law relationship with a reduced index was proposed and it is found the index is around 1 when the quasi-static and dynamic compliance are similar. A linear relationship between impact resistance and depth has been found during rebound, where the released elastic energy is much higher than that produced by quasi-static nanoindentation.  相似文献   

6.
Equivalent single and multi degree-of-freedom systems are used to predict the low-velocity impact response of rigidly supported, two-sided clamped, simply supported and four-sided clamped composite sandwich panels. The composite sandwich panels have orthotropic facesheets and are symmetric. Analytical solutions for the transient deformation response of the sandwich panels are presented in this paper, and analytical predictions of impact damage initiation are given in a companion paper. Equivalent masses are derived by assuming velocity distributions and calculating average kinetic energies (KEs) in terms of the amplitude of the top facesheet indentation and the global panel deflection. Equivalent spring and dashpot resistances are derived from the static load–indentation response and adjusted with dynamic material properties of the facesheet and core. Analytical predictions of the impact force compare well with experimental values from three independent studies.  相似文献   

7.
The energy absorbed during the failure of a variety of structural shapes is influenced by material, geometry and the failure mode. Failure initiation and propagation of the honeycomb sandwich under loading involves not only non-linear behavior of the constituent materials, but also complex interactions between various failure mechanisms. Therefore, there is a need for an improved understanding of the material characteristics and energy absorption modes to facilitate the design of sandwich performance. In the present study, failure initiation and propagation characteristics of sandwich beams and panels subjected to quasi-static and impact loadings were investigated. Experimental studies involved a series of penetration and perforation tests on 2D beam and 3D panel configurations using a truncated cone impactor with impact velocities up to 10 m/s. Preliminary tests were also performed on the sandwich beams subjected to the three-point bending. Load-carrying, energy-absorbing characteristics and failure mechanisms under quasi-static and impact loading were determined. Dominant deformation modes involved upper skin compression failure in the vicinity of the indenter, core crushing and lower skin tensile failure.  相似文献   

8.
The response of various composite structures to transverse loading was studied through im-pact and quasi-static testing. The AS4/3501-6 graphtie/epoxy composite structures considered have a [±4.5n/0n]s, layup configuration and include convex and concave shell sections, plates, and full cylinders. The impact tests fall within the so-called large-mass, low-velocity regime, where previous findings for composite plates indicate that quasi-static tests represent the impact response accurately; i.e., impact and quasi-static tests can be considered equivalent. This equivalence includes damage if the same peak force is reached in both the impact and quasi-static tests. The present work extends the impact and quasi-static equivalence from composite plates to various composite (shell) structures, including shells with an instability. Over nearly the entire range of impact events and shell structures considered, impact and quasi-static responses (including damage extent and distribution) are found to be equivalent. A small number of the most flexible (large-span, thin) specimens displayed a large-amplitude oscillatory impact loading response that was not observed for the quasi-static tests. These few specimens indicate one regime where the equivalence is limited The general equivalence demonstrated here for a wide range of composite structures has important implications for testing and design of damage-tolerant aerospace components. The findings also suggest that quasi-static experimentation can often be used to simulate the impact response (particularly damage) of composite shell structures.  相似文献   

9.
Dropweight impact tests have been performed on thin CFRP panels stiffened with blade or T-stiffeners and comparisons made with similar plain panels. The change in structural response of the panels is governed by the amount of damage sustained during impact. The increase in panel stiffness is associated with the suppression of backface cracking but larger areas of delamination.  相似文献   

10.
In this work an analytical model has been developed in order to predict the residual velocity of a cylindrical steel projectile, after impacting into a woven carbon/epoxy thin laminate. The model is based in an energy balance, in which the kinetic projectile energy is absorbed by the laminate through three different mechanisms: linear momentum transfer, fiber failure and laminate crushing. This last mechanism needs the quantification of the through-thickness compressive strength, which has been evaluated by means of quasi-static punch tests. Finally, high velocity impact tests have been accomplished in a wide range of velocities, to validate the model.  相似文献   

11.
Compression-after-impact (CAI) strength of foam-cored sandwich panels with composite face sheets is investigated experimentally. The low-velocity impact by a semi-spherical (blunt) projectile is considered, producing a damage mainly in a form of core crushing accompanied by a permanent indentation (residual dent) in the face sheet. Instrumentation of the panels by strain gauges and digital speckle photography analysis are used to study the effect of damage on failure mechanisms in the panel. Residual dent growth inwards toward the mid-plane of a sandwich panel followed by a complete separation of the face sheet is identified as the failure mode. CAI strength of sandwich panels is shown to decrease with increasing impact damage size. Destructive sectioning of sandwich panels is used to characterise damage parameters and morphology for implementation in a finite element model. The finite element model that accounts for relevant details of impact damage morphology is developed and proposed for failure analysis and CAI strength predictions of damaged panels demonstrating a good correlation with experimental results.  相似文献   

12.
A solution methodology to predict the residual velocity of a hemispherical-nose cylindrical projectile impacting a composite sandwich panel at high velocity is presented. The term high velocity impact is used to describe impact scenarios where the projectile perforates the panel and exits with a residual velocity. The solution is derived from a wave propagation model involving deformation and failure of facesheets, through-thickness propagation of shock waves in the core, and through-thickness core shear failure. Equations of motion for the projectile and effective masses of the facesheets and core as the shock waves travel through sandwich panel are derived using Lagrangian mechanics. The analytical approach is mechanistic involving no detail account of progressive damage due to delamination and debonding but changes in the load-bearing resistance of the sandwich panel due to failure and complete loss of resistance from the facesheets and core during projectile penetration. The predicted transient deflection and velocity of the projectile and sandwich panel compared fairly well with results from finite element analysis. Analytical predictions of the projectile residual velocities were also found to be in good agreement with experimental data.  相似文献   

13.
Self-sensing of damage by measurement of the DC electrical resistance or potential away from the damaged region was demonstrated in quasi-isotropic continuous carbon fiber epoxy-matrix composite laminates under impact at energy up to 5 J. The through-thickness potential was substantial up to 240– 480 mm (at 0.25–99 mA correspondingly) in the longitudinal direction from the position of through-thickness current application, due to current spreading in the longitudinal direction. A model for the current spreading is provided. The fractional change in resistance resulting from damage decreased with increasing distance from the point of impact (diameter of indentation up to 3.5 mm and depth of indentation up to 0.16 mm), such that it was non-zero even at a distance of 150 mm from the point of impact. Both the through-thickness resistance and the oblique resistance were effective indicators. The ability for the resistance measured away from the damaged region to indicate damage in the damaged region is due to the much lower electrical resistivity in the longitudinal than through-thickness or oblique directions in the composite.  相似文献   

14.
This paper gives details of a comprehensive dynamic mechanical analysis (DMA) material characterisation activity for all constituent layers of two modern-day thermoformed soccer balls. The resulting material data were used to define a series of viscoelastic finite element (FE) models of each ball design which incorporated the through-thickness composite material properties, including an internal latex bladder, woven fabric-based carcass and polymer based outer panels. The developed FE modelling methodology was found to accurately describe the viscoelastic kinetic energy loss characteristics apparent throughout a soccer ball impact at velocities which are typical of those experienced throughout play. The models have been validated by means of experimental impact testing under dynamic loading conditions. It was found that the viscoelastic material properties of the outer panels significantly affected ball impact characteristics, with outer panel materials exhibiting higher levels of viscous damping resulting in higher losses of kinetic energy.  相似文献   

15.
《Composites Part A》2007,38(3):1051-1057
Assessing the residual mechanical properties of a sandwich structure is an important part of any impact study and determines how the structure can withstand post impact loading. The damage tolerance of a composite sandwich structure composed of woven carbon/epoxy facesheets and a PVC foam core was investigated. Sandwich panels were impacted with a falling mass from increasing heights until damage was induced. Impact damage consisted of delamination and permanent indentation in the impacted facesheets. The Compression After Impact (CAI) strength of sandwich columns sectioned from these panels was then compared with the strength of an undamaged column. Although not visually apparent, the facesheet delamination damage was found to be quite detrimental to the load bearing capacity of the sandwich panel, underscoring the need for reliable damage detection techniques for composite sandwich structures.  相似文献   

16.
通过落锤冲击试验与准静态压痕试验研究了碳纤维增强树脂基复合材料层合板的损伤阻抗,发现两种试验中,复合材料层合板都具有三个损伤阶段。两种试验都具有两个表征损伤阶段变化的拐点:第一个拐点为分层拐点,表征分层起始;第二个拐点为损伤拐点,表征分层扩展趋于饱和。本文建议利用一个三维坐标点(x,y,z,其中x为第二拐点对应的冲击能量,y为相应的凹坑深度,z为分层投影面积)表示的损伤拐点来衡量材料抵抗冲击的能力,此损伤拐点不仅仅代表了材料抵抗冲击的关键点,也揭示了此时的内部损伤状态。  相似文献   

17.
为确定压缩预应力对复合材料层板抗冲击损伤性能的影响,首先对不同压缩预应力下的碳纤维/双马树脂CCF300/5428层板进行了低速冲击和准静态压痕试验,然后通过热揭层和冲击后压缩试验分别得到了层板分层面积和剩余强度。结果表明:压缩预应力会大幅降低层板的接触刚度和弯曲刚度,从而导致相同冲击能量下层板凹坑深度和背部基体开裂长度增大;对于准静态压痕过程和相同冲击能量下的冲击过程,分层起始载荷和峰值载荷均随压缩预应力的增大而减小;在相同冲击能量下,随着压缩预应力的增大,层板内部分层总面积及冲击能量吸收比不断增大,剩余压缩强度不断降低。因此,压缩预应力会降低复合材料层板的冲击损伤阻抗,对损伤容限性能不利,在对承受压缩载荷结构的试验验证过程中应考虑压缩预应力对抗冲击损伤性能的影响。   相似文献   

18.
This paper presents the findings of a research program that was undertaken to evaluate the static and fatigue characteristics of an innovative 3-D glass fiber reinforced polymer (GFRP) sandwich panel proposed for civil infrastructure and transportation applications. The research consists of analytical modeling verified by experimental results. A rational analytical model is presented and used to evaluate the effective elastic modulus, shear modulus and degree of composite interaction of the panels to resist one-way bending. The experimental program was conducted in two phases to study the static and fatigue behavior of the panels. In the first phase a total of 730 sandwich beams were tested to evaluate the effect of different parameters on the fundamental behavior of the panel. The parameters considered include the pattern and density of through-thickness fiber insertions, the overall thickness of the panels, and the number of FRP plies in the face skins. The study indicates that the shear behavior and degree of composite interaction of the panels is sensitive to the configuration of the panel core. The second phase of the experimental program included testing of 24 additional sandwich panels to evaluate the fatigue behavior. The results of the experimental program indicate that the panels with stiffer cores generally exhibited a higher degree of degradation than panels with more flexible cores. The findings of this study indicate that the proposed panels represent a versatile construction system which can be configured to achieve the specific design demands for civil engineering infrastructure applications.  相似文献   

19.
Quasi-static uniform compression tests and low-velocity concentrated impact tests were conducted to reveal the failure mechanisms and energy absorption capacity of two-layer carbon fiber composite sandwich panels with pyramidal truss cores. Three different volume-fraction cores (i.e., with different relative densities) were fabricated: 1.25%, 1.81%, and 2.27%. Two-layer sandwich panels with identical volume-fraction cores (either 1.25% or 2.27%), and also stepwise graded panels consisting of one light and one heavy core, were investigated under uniform quasi-static compression. Under quasi-static compression, load peaks were identified with complete failure of individual truss layers due to strut buckling or strut crushing, and specific energy absorption was estimated for different core configurations. In the impact test, the damage resulting from low-velocity concentrated impact was investigated. Our results show that compared with glass fiber woven textile truss cores, two-layer carbon fiber composite pyramidal truss cores have comparable specific energy absorptions, and thus could be used in the development of novel light-weight multifunctional structures.  相似文献   

20.
开展明胶鸟弹撞击复合材料蜂窝夹芯板试验,研究夹芯结构在软体高速冲击下的损伤形式,分析相关因素对结构动态响应结果的影响。通过CT扫描对复合材料蜂窝夹芯板内部进行检测可知,面板出现分层、基体开裂、纤维断裂、凹陷、向胞内屈曲等损伤形式,蜂窝芯出现芯材压溃、与面板脱粘的损伤形式;分析复合材料蜂窝夹芯板后面板的动态变形过程及撞击中心处位移-时间数据可知,复合材料蜂窝夹芯板在撞击过程中出现由全局弯曲变形主导和局部变形主导的两种变形模式;通过对比不同工况下的复合材料蜂窝夹芯板损伤程度可知,复合材料蜂窝夹芯板损伤程度随鸟弹撞击速度的增加而增大;蜂窝芯高度为10 mm的复合材料蜂窝夹芯板较蜂窝芯高度为5 mm的复合材料蜂窝夹芯板的损伤程度大;初始动能较大的球形鸟弹较圆柱形鸟弹对复合材料蜂窝夹芯板造成的冲击损伤程度更大。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号