首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
A new meshless method for solving nonlinear boundary value problems, based on the local boundary integral equation (LBIE) method and the moving least squares approximation, is proposed in the present paper. The total formulation and a rate formulation are developed for the implementation of the present method. The present method does not need domain and boundary elements to deal with the volume and boundary integrals, which will cause some difficulties for the conventional boundary element method (BEM) or the field/boundary element method (FBEM), as the volume integrals are inevitable in dealing with nonlinear boundary value problems. This is the same for the element free Galerkin (EFG) method which also needs element-like cells in the entire domain to evaluate volume integrals. The “companion fundamental solution” introduced in Zhu, Zhang and Atluri (1998) is used so that no derivatives of the shape functions are needed to construct the stiffness matrix for the interior nodes, as well as for those nodes with no parts of their local boundaries coinciding with the global boundary of the domain of the problem, where essential boundary conditions are specified. It is shown that the satisfaction of the essential as well as natural boundary conditions is quite simple, and algorithmically very efficient, in the present nonlinear LBIE approach. Numerical examples are presented for several problems, for which exact solutions are available. The present method converges fast to the final solution with reasonably accurate results for both the unknown variable and its derivatives. No post processing procedure is required to compute the derivatives of the unknown variable (as in the conventional FBEM), since the solution from the present method, using the moving least squares approximation, is already smooth enough. The numerical results in these examples show that high rates of convergence for the Sobolev norms ∥·∥0 and ∥·∥1 are achievable, and that the values of the unknown variable and its derivatives are quite accurate.  相似文献   

2.
 The meshless method based on the local boundary integral equation (LBIE) is a promising method for solving boundary value problems, using an local unsymmetric weak form and shape functions from the moving least squares approximation. In the present paper, the meshless method based on the LBIE for solving problems in linear elasticity is developed and numerically implemented. The present method is a truly meshless method, as it does not need a “finite element mesh”, either for purposes of interpolation of the solution variables, or for the integration of the energy. All integrals in the formulation can be easily evaluated over regularly shaped domains (in general, spheres in three-dimensional problems) and their boundaries. The essential boundary conditions in the present formulation can be easily imposed even when the non-interpolative moving least squares approximation is used. Several numerical examples are presented to illustrate the implementation and performance of the present method. The numerical examples show that high rates of convergence with mesh refinement for the displacement and energy norms are achievable. No post-processing procedure is required to compute the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.  相似文献   

3.
The Galerkin finite element method (GFEM) owes its popularity to the local nature of nodal basis functions, i.e., the nodal basis function, when viewed globally, is non-zero only over a patch of elements connecting the node in question to its immediately neighboring nodes. The boundary element method (BEM), on the other hand, reduces the dimensionality of the problem by one, through involving the trial functions and their derivatives, only in the integrals over the global boundary of the domain; whereas, the GFEM involves the integration of the “energy” corresponding to the trial function over a patch of elements immediately surrounding the node. The GFEM leads to banded, sparse and symmetric matrices; the BEM based on the global boundary integral equation (GBIE) leads to full and unsymmetrical matrices. Because of the seemingly insurmountable difficulties associated with the automatic generation of element-meshes in GFEM, especially for 3-D problems, there has been a considerable interest in element free Galerkin methods (EFGM) in recent literature. However, the EFGMs still involve domain integrals over shadow elements and lead to difficulties in enforcing essential boundary conditions and in treating nonlinear problems. The object of the present paper is to present a new method that combines the advantageous features of all the three methods: GFEM, BEM and EFGM. It is a meshless method. It involves only boundary integration, however, over a local boundary centered at the node in question; it poses no difficulties in satisfying essential boundary conditions; it leads to banded and sparse system matrices; it uses the moving least squares (MLS) approximations. The method is based on a Local Boundary Integral Equation (LBIE) approach, which is quite general and easily applicable to nonlinear problems, and non-homogeneous domains. The concept of a “companion solution” is introduced so that the LBIE for the value of trial solution at the source point, inside the domain Ω of the given problem, involves only the trial function in the integral over the local boundary Ω s of a sub-domain Ω s centered at the node in question. This is in contrast to the traditional GBIE which involves the trial function as well as its gradient over the global boundary Γ of Ω. For source points that lie on Γ, the integrals over Ω s involve, on the other hand, both the trial function and its gradient. It is shown that the satisfaction of the essential as well as natural boundary conditions is quite simple and algorithmically very efficient in the present LBIE approach. In the example problems dealing with Laplace and Poisson's equations, high rates of convergence for the Sobolev norms ||·||0 and ||·||1 have been found. In essence, the present EF-LBIE (Element Free-Local Boundary Integral Equation) approach is found to be a simple, efficient, and attractive alternative to the EFG methods that have been extensively popularized in recent literature.  相似文献   

4.
 The meshless local Petrov-Galerkin (MLPG) approach is an effective method for solving boundary value problems, using a local symmetric weak form and shape functions from the moving least squares approximation. In the present paper, the MLPG method for solving problems in elasto-statics is developed and numerically implemented. The present method is a truly meshless method, as it does not need a “finite element mesh”, either for purposes of interpolation of the solution variables, or for the integration of the energy. All integrals in the formulation can be easily evaluated over regularly shaped domains (in general, spheres in three-dimensional problems) and their boundaries. The essential boundary conditions in the present formulation are imposed by a penalty method, as the essential boundary conditions can not be enforced directly when the non-interpolative moving least squares approximation is used. Several numerical examples are presented to illustrate the implementation and performance of the present MLPG method. The numerical examples show that the present MLPG approach does not exhibit any volumetric locking for nearly incompressible materials, and that high rates of convergence with mesh refinement for the displacement and energy norms are achievable. No post-processing procedure is required to compute the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.  相似文献   

5.
In this article a numerical solution of the time dependent, coupled system equations of magnetohydrodynamics (MHD) flow is obtained, using the strong-form local meshless point collocation (LMPC) method. The approximation of the field variables is obtained with the moving least squares (MLS) approximation. Regular and irregular nodal distributions are used. Thus, a numerical solver is developed for the unsteady coupled MHD problems, using the collocation formulation, for regular and irregular cross sections, as are the rectangular, triangular and circular. Arbitrary wall conductivity conditions are applied when a uniform magnetic field is imposed at characteristic directions relative to the flow one. Velocity and induced magnetic field across the section have been evaluated at various time intervals for several Hartmann numbers (up to 105) and wall conductivities. The numerical results of the strong-form MPC method are compared with those obtained using two weak-form meshless methods, that is, the local boundary integral equation (LBIE) meshless method and the meshless local Petrov–Galerkin (MLPG) method, and with the analytical solutions, where they are available. Furthermore, the accuracy of the method is assessed in terms of the error norms L 2 and L , the number of nodes in the domain of influence and the time step length depicting the convergence rate of the method. Run time results are also presented demonstrating the efficiency and the applicability of the method for real world problems.  相似文献   

6.
Based on the moving least‐squares (MLS) approximation, we propose a new approximation method—the complex variable moving least‐squares (CVMLS) approximation. With the CVMLS approximation, the trial function of a two‐dimensional problem is formed with a one‐dimensional basis function. The number of unknown coefficients in the trial function of the CVMLS approximation is less than in the trial function of the MLS approximation, and we can thus select fewer nodes in the meshless method that is formed from the CVMLS approximation than are required in the meshless method of the MLS approximation with no loss of precision. The meshless method that is derived from the CVMLS approximation also has a greater computational efficiency. From the CVMLS approximation, we propose a new meshless method for two‐dimensional elasticity problems—the complex variable meshless method (CVMM)—and the formulae of the CVMM for two‐dimensional elasticity problems are obtained. Compared with the conventional meshless method, the CVMM has a greater precision and computational efficiency. For the purposes of demonstration, some selected numerical examples are solved using the CVMM. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Recently, considerable effort has been devoted to the development of the so‐called meshless methods. Meshless methods still require considerable improvement before they equal the prominence of finite elements in computer science and engineering. One of the paths in the evolution of meshless methods has been the development of the element free Galerkin (EFG) method. In the EFG method, it is obviously important that the ‘a posteriori error’ should be approximated. An ‘a posteriori error’ approximation based on the moving least‐squares method is proposed, using the solution, computed from the EFG method. The error approximation procedure proposed in this paper is simple to construct and requires, at most, nearest neighbour information from the EFG solution. The formulation is based on employing different moving least‐squares approximations. Different selection strategies of the moving least‐squares approximations have been used and compared, to obtain optimum values of the parameters involved in the approximation of the error. The performance of the developed approximation of the error is illustrated by analysing different examples for two‐dimensional (2D) potential and elasticity problems, using regular and irregular clouds of points. The implemented procedure of error approximation allows the global energy norm error to be estimated and also provides a good evaluation of local errors. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
A point interpolation meshless method is proposed based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity associated with the meshless methods based on only the polynomial basis. This non‐singularity is useful in constructing well‐performed shape functions. Furthermore, the interpolation function obtained passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshless methods based on the moving least‐squares approximation. In addition, the partial derivatives of shape functions are easily obtained, thus improving computational efficiency. Examples on curve/surface fittings and solid mechanics problems show that the accuracy and convergence rate of the present method is high. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we present a direct meshless method of boundary integral equation (BIE), known as the boundary element‐free method (BEFM), for two‐dimensional (2D) elastodynamic problems that combines the BIE method for 2D elastodynamics in the Laplace‐transformed domain and the improved moving least‐squares (IMLS) approximation. The formulae for the BEFM for 2D elastodynamic problems are given, and the numerical procedures are also shown. The BEFM is a direct numerical method, in which the basic unknown quantities are the real solutions of the nodal variables, and the boundary conditions can be implemented directly and easily that leads to a greater computational precision. For the purpose of demonstration, some selected numerical examples are solved using the BEFM. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The meshless Shepard and least squares (MSLS) method and the meshless Shepard method are partition of unity based meshless interpolations which eliminate the problems by other meshless methods such as the difficulty in direct imposition of the essential boundary conditions. However, singular weight functions have to be used in both methods to enforce the approximation interpolatory, which leads to the loss of smoothness in approximation and locally oscillatory results. In this paper, an improved MSLS interpolation is developed by using dually defined nodal supports such that no singular weight function is required. The proposed interpolation satisfies the delta property at boundary nodes and the compatibility condition throughout the domain, and is capable of exactly reproducing the basis function. The computational cost of the present interpolation is much lower than the moving least-squares approximation which is probably the most widely used meshless interpolation at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号