首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon materials, such as graphite oxides, carbon nanotubes and graphenes, have exceptional thermal conductivity, which render them excellent candidates as fillers in advanced thermal interface materials for high density electronics. In this paper, these carbon materials were functionalized with 4,4′-diaminodiphenyl sulphone (DDS), to enhance the bonding between the carbon materials and the resin matrix. Their visibly different properties were investigated. It seems that DDS-functionalization can obviously improve the interfacial heat transfer between the carbon materials and the epoxy matrix. The thermal conductivity enhancement of D-Graphene composites (0.493 W/m K) was about 30% higher than that of D-MWNTs composites (0.387 W/m K) at 0.5 vol.% loading. The different effects among EGO, D-EGO, MWNTs, D-MWNTs and D-Graphene in polymer composites were also discussed. It was demonstrated that DDS-functionalized carbon materials had an obvious effect on the thermal performances of composite materials and were more effective in thermal conductivity enhancement.  相似文献   

2.
A simplified and an eco-friendly approach to develop polychloroprene rubber composites with high electrical conductivity is reported. The usage of room temperature ionic liquid, 1-butyl 3-methyl imidazolium bis(trifluoromethylsulphonyl)imide and a low concentration (5 phr) of commercial grade multi-walled carbon nanotubes (MWCNTs) in polychloroprene rubber exhibited an electrical conductivity of 0.1 S/cm with a stretchability >500%. The physical (cation-pi/pi-pi) interaction between the ionic liquid and the MWCNTs is evidenced by Raman spectroscopy. Transmission electron microscopy images exhibit an improved dispersion of the BMI modified tubes in matrix at various magnification scales. The dependency of dynamic properties on the concentration of ionic liquid at constant loading of nanotubes supports the fact that ionic liquid assists in the formation of filler-filler networks. The tensile modulus of 3 phr loaded modified MWCNT/CR composite is increased by 50% with regard to that of the unmodified MWCNT/CR composite. Mooney-Rivlin plot displays the existence of rubber-filler interactions.  相似文献   

3.
We report the enchanced in situ performances of tensile strength and thermal conductivity at elevated temperatures of the PCS-free SiC/SiC composite with a high fiber volume fraction above 50% fabricated by NITE process for nuclear applications. The composite was fabricated by the optimized combination of the fiber coating, the matrix slurry and the pressure-sintering conditions, based on our previous composites’ study history. The composite showed the excellent tensile strength up to 1500 °C, that it retained approximately 88% of the room-temperature strength. Also, the thermal conductivity of the composites represented over 20 W/m K up to 1500 °C, which was enough high to take the advantage of the assumed design value for nuclear applications. Microstructural observation indicated that the excellent high-temperature performances regarding tensile strength and thermal conductivity up to 1500 °C were the contribution to the high densification and crystalline structure in matrix.  相似文献   

4.
Composites of Kraton-D® 1102 BT (a styrene–butadiene–styrene block copolymer) and multi-walled carbon nanotubes (MWCNTs) were prepared by melt mixing. The composites were characterized by electrical conductivity measurements (Coleman’s method), mechanical properties (DMA and stress–strain tests), thermal stability (thermogravimetry) and morphology of dispersion (SEM). Finally, the resulting composites were compared with those made by the solution casting method. The results showed a strong influence of the preparation methodology on the final properties of the composites due to changes in morphology. Composites prepared by casting showed a higher electrical conductivity than extruded ones; the composites with 6 wt.% of MWCNT prepared by extrusion presented conductivity of the same order of magnitude as the composite with 1 wt.% of MWCNT prepared by casting – 10−3 to 10−4 S cm−1. However, the extruded samples presented better mechanical properties than the casting ones.  相似文献   

5.
The anisotropic development of thermal conductivity in polymer composites was evaluated by measuring the isotropic, in-plane and through-plane thermal conductivities of composites containing length-adjusted short and long multi-walled CNTs (MWCNTs). The thermal conductivities of the composites were relatively low irrespective of the MWCNT length due to their high contact resistance and high interfacial resistance to polymer resins, considering the high thermal conductivity of MWCNTs. The isotropic and in-plane thermal conductivities of long-MWCNT-based composites were higher than those of short-MWCNT-based ones and the trend can accurately be calculated using the modified Mori-Tanaka theory. The in-plane thermal conductivity of composites with 2 wt% long MWCNTs was increased to 1.27 W/m·K. The length of MWCNTs in polymer composites is an important physical factor in determining the anisotropic thermal conductivity and must be considered for theoretical simulations. The thermal conductivity of MWCNT polymer composites can be effectively controlled in the processing direction by adjusting the length of the MWCNT filler.  相似文献   

6.
Diamond-Cu composites from the direct combination of diamond and Cu show low thermal conductivities due to weak interface and high thermal resistance as a result of chemical incompatibility. In this paper, a new method is proposed to strengthen interfacial binding between diamond and Cu by coating strong carbide-forming elements, e.g., Ti or Cr on the surface of the diamond through vacuum micro-deposition. Interfacial thermal resistance of diamond-Cu composites is greatly decreased when diamond particles are coated by a Cr or Ti layer of a certain thickness before combining with Cu. Thermal conductivity is also increased several times. Cr coating can reduce more effectively interface thermal resistance between diamond and Cu than Ti coating. Moreover, it has a smaller negative impact on the thermal conductivity of the Cu matrix, resulting in higher thermal conductivity of Cr-coated diamond-Cu composites. Through the vacuum micro-deposition technology, Cr on the diamond particle surface is present in the form Cr7C3 near diamond and a pure Cr outer layer at 2:1. The optimum thickness is within 0.6-0.9 μm; at this depth, the thermal conductivities of 70 vol% diamond-Cu composites can be increased four times and reach as high as 657 W/m K. In this work, an original theoretical model is proposed to estimate the thermal conductivities of composite materials with an interlayer of a certain thickness. The predicted values from this model are in good agreement with the experimental values.  相似文献   

7.
Study was made of the effect of multiwall carbon nanotubes (MWCNTs) and polymeric compatibilizer on thermal, mechanical, and tribological properties of high density polyethylene (HDPE). The composites were prepared by melt mixing in two steps. Carbon nanotubes (CNTs) were melt mixed with maleic anhydride grafted polyethylene (PEgMA) as polymeric compatibilizer to produce a PEgMA-CNT masterbatch containing 20 wt% of CNTs. The masterbatch was then added to HDPE to prepare HDPE nanocomposites with CNT content of 2 or 6 wt%. The unmodified and modified (hydroxyl or amine groups) CNTs had similar effects on the properties of HDPE-PEgMA indicating that only non-covalent interactions were achieved between CNTs and matrix. According to SEM studies, single nanotubes and CNT agglomerates (size up to 1 μm) were present in all nanocomposites regardless of content or modification of CNTs. Addition of CNTs to HDPE-PEgMA increased decomposition temperature, but only slight changes were observed in crystallization temperature, crystallinity, melting temperature, and coefficient of linear thermal expansion (CLTE). Young’s modulus and tensile strength of matrix clearly increased, while elongation at break decreased. Measured values of Young’s moduli of HDPE-PEgMA-CNT composites were between the values of Young’s moduli for longitudinal (E11) and transverse (E22) direction predicted by Mori-Tanaka and Halpin-Tsai composite theories. Addition of CNTs to HDPE-PEgMA did not change the tribological properties of the matrix. Because of its higher crystallinity, PEgMA possessed significantly different properties from HDPE matrix: better mechanical properties, lower friction and wear, and lower CLTE in normal direction. Interestingly, the mechanical and tribological properties and CLTEs of HDPE-PEgMA-CNT composites lie between those of PEgMA and HDPE.  相似文献   

8.
Hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotubes (HPU-MWCNTs) were incorporated in a polyurethane (PU) matrix based on poly(ethylene oxide-tetrahydrofuran) and aliphatic polyisocyanate resin as curing agent. The 9–12 nm thick HPU shell formed on the MWCNTs improved the dispersion of MWCNTs and enhanced the interfacial adhesion between the PU matrix and MWCNTs, leading to improvements in storage modulus and Tg of the composites and enhancement of the thermal stability of PU. Thus, composites with 0.5–1 wt% MWCNTs increased the thermal conductivity by about 60–70% when compared to, and retained the high electrical resistivity of, neat PU.  相似文献   

9.
Both isotropic and oriented wood polymer composites (WPC) based on 40% w/w of a softwood powder/hardwood powder and polypropylene (PP), together with solid pieces of wood, were subjected to water immersion and thermal expansion tests. Although generally die drawing increased the amount of water absorbed by the WPC by about 2-fold when compare to isotropic WPC, the oriented WPC exhibited extremely high hydro-dimensional stability. The values of the longitudinal and transverse swelling/shrinkage of the WPC oscillated only between 0 and −2.3% compared to values of between 4 and 14% for the solid woods. Incorporation of soft/hard wood powders into PP also substantially decreased its thermal expansion coefficient α in both the isotropic and the oriented states. This extremely positive effect was enhanced by increasing the draw ratio. In the longitudinal direction, α decreased from about 80 × 10−6 °C−1 (for the isotropic PP) to 5 × 10−6 °C−1 for the highly drawn PP filled with softwood.  相似文献   

10.
Effective conductivity of polymer composites, filled with conducting fibers such as carbon nanotubes, is studied using statistical continuum theory. The fiber orientation distribution in the matrix plays a very important role on their effective properties. To take into account their orientation, shape and distribution, two-point and three-point probability distribution functions are used. The effect of fibers orientation is illustrated by comparing the effective conductivity of microstructures with oriented and non-oriented fibers. The randomly oriented fibers result in an isotropic effective conductivity. The increased fiber orientation distribution can lead to higher anisotropy in conductivity. The effect of fiber’s aspect ratio on the effective conductivity is studied by comparing microstructures with varying degrees of fiber orientation distribution. Results show that the increase in anisotropy leads to higher conductivity in the maximum fiber orientation distribution direction and lower conductivity in the transverse direction. These results are in agreement with various models from the literature that show the increase of the aspect ratio of fibers improves the electrical and thermal conductivity.  相似文献   

11.
A novel particles-compositing method was used for the first time to disperse different contents of multi-walled carbon nanotubes (CNTs) in micron sized copper powders, which were subsequently consolidated into CNT/Cu composites by spark plasma sintering (SPS). Microstructural observations showed that the homogeneous distribution of CNTs and dense composites could be obtained for 0–10 vol.% CNT contents. The CNT clusters were appeared in the powder mixture with 15 vol.% CNTs, which resulted in an insufficient densification of the composites. The effective thermal conductivity of the composites was analyzed both theoretically and experimentally. The addition of CNTs showed no enhancement in overall thermal conductivity of the composites due to the interface thermal resistance associated with the low phase contrast of CNT to copper and the random tube orientation. Besides, the composite containing 15 vol.% CNTs led to a rather low thermal conductivity due possiblely to the combined effect of unfavorable factors induced by the presence of CNT clusters, i.e. large porosity, lower effective conductivity of CNT clusters themselves and reduction of SPS cleaning effect. The CNT/Cu composites may be a promising thermal management material for heat sink applications.  相似文献   

12.
Sterilization of implants and other clinical accessories is an integral part of any medical application. Although many materials are used as implants, polyethylene stands unique owing to its versatility. Carbon nanotubes are being used as a filler material to enhance the properties of polyethylene. However, the role of multi walled carbon nanotubes (MWCNTs) as an effective antioxidant and radical scavenger in resisting the deteriorating effects of sterilization is yet to be studied in detail. The present work is aimed to investigate the mechanical properties and oxidation stability of irradiated high density polyethylene (HDPE) reinforced by MWCNTs with various concentrations such as 0.25%, 0.50%, 0.75% and 1.00 wt.%. The composites were exposed to 60Co source in air and irradiated at different dosage level starting from 25 to 100 kGy and then shelf aged for a period of 120 days prior to investigation. The loss in toughness, Young’s modulus and ultimate strength at 100 kGy for 1 wt.% MWCNTs composite were found to be 21.5%, 20.3% and 19.2%, respectively compared to that of unirradiated composite. FTIR and ESR studies confirmed the antioxidant and radical scavenging potentialities of MWCNTs with increased concentration and irradiation dosage. It was found that by the addition of 1 wt.% MWCNTs into virgin HDPE, the oxidation index of the composite at 100 kGy was decreased by 56.2%. It is concluded that the addition of MWCNTs into polyethylene not only limits the loss of mechanical properties but also improves its post irradiation oxidative stability.  相似文献   

13.
Fiber reinforced high temperature polymer matrix composites are currently gaining wide usage in aircraft structures, especially in airframe and engine inlet casing. The failure of composites in worst-case operational conditions mandates the extensive investigation of the mechanical behavior, and the durability in long-term performance and service life under thermal oxidation. In this work, unidirectional IM7 carbon fiber reinforced high-temperature BMI resin composite (IM7/5250-4) were isothermally aged in air for 2 months at 195 °C and 245 °C, respectively. The dynamic behavior of thermally aged composites was investigated on a split Hopkinson pressure bar (SHPB) in three principal directions. The results indicate that thermal oxidation leads to significant reduction in both stiffness and strength of the composites. Optical micrographs of fracture surface and failure pattern of composite after SHPB impact reveals oxidation induced debonding along the fiber–matrix interface due to oxygen diffusion under long-term exposure to elevated temperatures.  相似文献   

14.
This paper compares the predicted values of the thermal conductivity of a composite made using the equivalent inclusion method (EIM) and the finite element method (FEM) using representative volume elements. The effects of inclusion anisotropy, inclusion orientation distribution, thermal interface conductance, h, and inclusion dimensions have been considered. Both methods predict similar overall behaviour, whereby at high h values, the effective thermal conductivity of the composite is limited by the inclusion anisotropy, while at lower h values, the effect of anisotropy is greatly diminished due to the more dominant effect of limited heat flow across the inclusion/matrix interface. The simulation results are then used to understand why in those cases where it has been possible to produce CNF reinforced Cu matrix composites with a large volume fraction of well dispersed CNFs, the measured thermal properties of the composite have failed to meet the expectations in terms of thermal conductivity, with measured conductivities in the range 200–300 W/m K. The simulation results show that, although degradation of the thermal properties of the CNFs and a poor interfacial thermal conductance are very likely the reasons behind the low conductivities reported, great care should be taken when measuring the thermal conductivity of this new class of materials, to avoid misleading results due to anisotropic effects.  相似文献   

15.
For practical application of carbon nanotube (CNT)/polymer composites, it is critical to produce the composites at high speed and large scale. In this study, multi-walled carbon nanotubes (MWNTs) with large diameter (∼45 nm) and polyvinyl alcohol (PVA) were used to increase the processing speed of a recently developed spraying winding technique. The effect of the different winding speed and sprayed solution concentration to the performance of the composite films were investigated. The CNT/PVA composites exhibit tensile strength of up to 1 GPa, and modulus of up to 70 GPa, with a CNT weight fraction of 53%. In addition, an electrical conductivity of 747 S/cm was obtained for the CNT/PVA composites. The good mechanical and electrical properties are attributed to the uniform CNTs and PVA matrix integration and the high degree of tube alignment.  相似文献   

16.
Polymeric composites with relatively high thermal conductivity, high dielectric permittivity, and a low dissipation factor are obtained in the present study. Three types of core-shell-structured aluminum (Al) particles are incorporated in poly(vinylidene fluoride) (PVDF) by melt-mixing and hot-pressing processes. The morphological, thermal, and dielectric properties of the composites are characterized using thermal analysis, a scanning electron microscope, and a dielectric analyzer. The results indicate that the Al particles decrease the degree of crystallinity of PVDF, and that the particle size and shape of the filler affect the thermal conductivity and dielectric properties of Al/PVDF. No variation in the dissipation factor is observed up to 60 wt.% Al. Thermal conductivity and dielectric permittivity values as high as 1.65 W/m K and 230, respectively, as well as a low dissipation factor of 0.25 at 0.1 Hz, are realized for the composites with 80 wt.% spherical Al.  相似文献   

17.
We show how an alternating electric field can be used to align silver micron or sub-micron sized particles into microscopic wires in diverse polymer matrices based on the dielectrophoretic effect. The electric field is set by an electrode pair and the wires form conductive pathways through the matrix, bridging these electrodes electrically. The matrix is cured after alignment, locking wires in permanent pathways within the polymer. The wires are then characterized by ac impedance spectroscopy. The alignment can take place either in-plane or out-of-plane, and yields a directional conductivity in the alignment direction parallel to the electric field lines. The samples can be centimeters wide containing thousands of wires in parallel, but even an individual wire can be grown and controlled. The initial mixture contains less than 1 vol.% of silver and is an electrical insulator. The bulk conductivity enhancement, due to the alignment, may be 5 orders of magnitude, typically from 1 × 10−5 S/m to 1 S/m as the particle alignment converts the sample conductivity from polymer dominated to silver dominated. For the aligned isolated silver wires, the jump in conductivity, confined to the volume filled by the wire can be seen to be as high as 9–10 orders of magnitude, resulting in conductivities as high as 1 × 105 S/m, thus approaching those of pure metal. This technique offers new ways on how e.g. conducting polymer composites and conducting glues could be produced.  相似文献   

18.
The percolation behaviour of the hybrid composites of polypropylene glycol (PPG) filled with multiwalled carbon nanotubes (MWCNTs) and Laponite RD (Lap), or with MWCNTs and organo-modified Laponite (LapO) was studied by wide angle X-ray diffraction (XRD), microscopic image analysis, and electrical conductivity measurements. Cetyltrimethylammoniumbromide (CTAB) was used as an organo-modifier of Laponite. The Lap and LapO were found to have rather different affinity to PPG. XRD data have evidenced finite PPG integration inside Lap and complete exfoliation of LapO stacks in a PPG matrix. In PPG + MWCNT composites containing no Lap or LapO, increase of MWCNT concentration above the critical value Cp ∼ 0.4 wt% resulted in percolation. The value of the percolation threshold, Cp, was practically the same for hybrid PPG + MWCNT + Lap composites. However, it noticeably decreased (Cp ∼ 0.2 wt%) in PPG + MWCNT + LapO materials. The observed behaviour of the percolation threshold may be attributed to the effects exerted by LapO on the size of MWCNT aggregates, state of their dispersion and homogeneity of their spatial distribution.  相似文献   

19.
Strengthening efficiency of multi-walled carbon nanotubes (MWCNTs) is investigated for aluminum-based composites with grain sizes ranging from ∼250 to ∼65 nm. The strength of composites is significantly enhanced proportional to an increase of the MWCNT volume. However, the increment differs depending on deformation mode of the matrix. The strengthening efficiency of MWCNTs in ultrafine-grained composites is comparable with that predicted by the discontinuous fiber model, whereas the efficiency becomes half of the theoretical prediction as grain size is reduced below ∼70 nm. For nano-grained aluminum, activities of forest dislocations diminish and dislocations emitted from grain boundaries are dynamically annihilated during the recovery process, providing a weak plastic strain field around MWCNTs. The observation may provide a basic understanding of the strengthening behavior of nano-grained metal matrix composites.  相似文献   

20.
Metal matrix composites with embedded multiwall-carbon nanotubes (MWNT) are attractive because MWNTs exhibit high intrinsic thermal conductivity. Thus to improve the thermal conductivity of a metal matrix, silver matrix composites with MWNT were prepared by “chemical” mixing, different active elements were introduced enhancing the bonding between inclusions and matrix. The evolution of the thermal conductivity and the coefficient of thermal expansion CTE as a function of the MWNT concentration and the presence of active elements cobalt, molybdenum or nickel in the silver matrix in Ag–X/MWNT composites are presented. A transition from weak to strong matrix/MWNT bonding is observed by adding active elements, the latter leading concomitantly to an increase in thermal conductivity and a decrease in CTE. The thermal conductivity was found to increase by up to 10% for a composition of 0.2 wt.% MWNT and cobalt as active element and a 6% decrease in CTE compared to a pure silver reference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号