首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为了研究操作参数对双蜗壳式旋风分离器分离性能的影响,本文采用试验方法测量了液滴粒径、液滴浓度不同时旋风管的分离效率。结果表明:旋风管对小粒径液滴的分离效率较低,当入口液滴的中位粒径从19.02μm升高到37.28μm,旋风管的分离效率升高了接近20%。喷雾液滴的浓度升高时,旋风管的分离效率也随之升高,但影响程度较粒度较小。  相似文献   

2.
采用数值模拟方法,结合试验与理论分析,研究Shell型导叶式旋风管内短路流颗粒夹带问题。结果表明:Shell型旋风管直筒芯管下口存在短路流现象,计算得知短路流量占进口总流量的39.3%。理论分析发现,短路流主要夹带粒径小于9μm的颗粒,短路流夹带颗粒临界粒径为9μm。另外,数值模拟跟踪颗粒逃逸的轨迹证明,Shell型旋风管能将粒径大于9μm的颗粒全部除尽;粒径小于9μm的颗粒既有经排尘口返混逃逸,又有短路流夹带逃逸,其中短路流夹带逃逸占主要部分,且随着粒径的增加,经芯管下口短路夹带逃逸的数目减小。  相似文献   

3.
结合水煤浆流化-悬浮燃烧的特点,通过全面测定循环流化床锅炉用旋风分离器在不同操作参数下的分离效率,研究了入口气速、入口颗粒浓度、入口颗粒物性等对旋风分离器的压降和分离性能的影响规律。实验结果表明,影响旋风分离器分离性能的主要物性参数是颗粒的中位粒径、密度,在入口颗粒的中位粒径相差较大时分离性能主要受粒径的影响,而当入口颗粒粒径相差较小时密度对分离器分离性能的影响则更为显著。  相似文献   

4.
采用雷诺应力模型(RSM)和离散相模型(DPM),计算不同结构尺寸下小型旋风分离器对微米级颗粒的分离性能。计算结果表明,小型旋风分离器排气管直径、排尘锥锥顶直径对除尘效率和压力降的影响显著,分离效率为50%时的临界粒径约为0.9μm。结果显示,此类小旋风分离器有望用于减少雾霾。  相似文献   

5.
试验测定和对比页岩灰和流化催化裂化三旋灰(FCC三旋灰)的旋风分离器性能,考察入口气速、入口浓度对分离效率和分离器压降的影响.结果表明,在相同操作条件下,同一台旋风分离器上,粒度小于75 μm的页岩灰与FCC三旋灰的分离效率和分离器压降曲线差别显著;页岩灰的分离效率与分离器压降都明显低于FCC三旋灰,且入口浓度增大,页岩灰分离器压降的下降幅度高于FCC三旋灰;页岩灰分离效率最高的入口气流速度也低于FCC三旋灰.颗粒特性对旋风分离器的分离性能有明显影响,页岩灰和三旋灰的颗粒特性与形状差别是导致其旋风分离特性不同的一个基本原因;油页岩旋风分离器的设计应当考虑油页岩颗粒特性的影响.  相似文献   

6.
采用计算流体力学离散颗粒模型(CFD-DPM),结合响应曲面法,通过系列正交实验,对旋风分离器结构进行优化设计;考察旋风分离器的7个结构参数以及参数间的交互作用对其性能的影响。结果表明:对压降和分离效率影响最显著的结构参数为排气管直径,然后分别是入口高度、入口宽度、旋风分离器长度、排气管插入深度;入口尺寸与排气管直径对压降的影响存在很强的交互作用;旋风分离器长度与排气管插入深度、入口宽度与排气管直径、入口宽度与旋风分离器长度及排气管直径与旋风分离器长度对分离效率的影响存在较强的交互作用,其余因素影响不显著;通过对各结构参数的响应面进行优化,获得该旋风分离器在最小压降和最大分离效率时对应的几何结构参数。  相似文献   

7.
为了有效提高新型多效旋风分离器对粒径为0.1~3μm颗粒的分离效率,获取该设备的阻力性能,采用实验方法研究该新型多效旋风分离器压降与进口气速的关系,并与Lapple型旋风分离器进行比较。结果表明:进口风速为5~30m/s时,主体直径为0.25m的多效旋风分离器总阻力系数为7.29,其中,一级和二级预分离螺旋管的阻力系数分别为1.04和1.73;主体的阻力系数为4.52。直径为0.25m的Lapple型旋风分离器的阻力系数为7.21。  相似文献   

8.
旋风分离器是雾化焙烧制备稀土氧化物工艺中的常用分离设备之一。为了提高焙烧产物中超细颗粒的分离效率,采用Fluent数值模拟和实验验证相结合的方法,得到旋风分离器的优化构型,利用颗粒分离效率和流体压降2项指标进行评价,以探讨扩张结构旋风分离器的优化效果。结果表明:在锥筒高度为距旋风分离器顶板370 mm处,进行角度为10°的扩张改进后,分离器对粒径为1、 3、 5μm的颗粒分离效率分别提高13.25%、 42.33%、 44.02%,阻力系数减小3.6%;新改进结构旋风分离器在降低能耗的同时提高分离效率。  相似文献   

9.
为了提高旋风分离器分离效率,采用实验和CFD模拟相结合的方法,研究稳涡器的轴向位置对旋风分离器气固两相流动特性和分离性能的影响,探讨稳涡器抑制颗粒返混逃逸机制的形成。结果表明:稳涡器的设置降低轴线附近气流的轴向速度,加深气流的滞流程度,抑制颗粒的返混和逃逸,强化返混颗粒的二次分离作用,提高颗粒的分离效率;稳涡器轴向位置较高时,排尘口截面的通流面积小,下行气流阻力大,运行压降大;当稳涡器顶部与排尘口等高时,轴线附近的轴向速度降幅最大,返混逃逸颗粒数量减少25%~50%,分离效率最高。  相似文献   

10.
依据标准选用8个不同粒径的标准聚苯乙烯小球分别进行PM2.5切割器的评价,检测周期长、流程复杂。采用多种粒径粒子进行混匀后雾化,形成多分散气溶胶再进行检测,可一次性获取切割器在几种粒径下的捕集效率。用两种方法评价比对了国内外两种切割器,结果表明Da50及几何标准偏差δg一致性较好,偏差不超过3%,但混合方法的测量时间较传统方法缩短了80%。研究成果为优化切割器评价流程提供了参考。  相似文献   

11.
Low separation efficiency and large pressure drop are two common problems of cyclones. In this paper, a 3D printed guide vane cyclone separator was designed to study the separation efficiency, turbulent kinetic energy, and particle movement of particle group by experiment and simulation. The results shown that the tangential velocity was the major influence of separating. The bottom of the exhaust pipe was the main region of gas–solid separation and pressure drop. The separation efficiency and pressure drop were positively correlated with the inlet velocity and the particle radius of the fluid. The distribution of turbulent kinetic energy that leaded to the pressure drop loss was concentrated on the inlet of the exhaust pipe. The swirl has external and internal two directions. The optimized cyclone has a longer and narrower blade flow path to obtain higher separation efficiency, especially at low inlet velocity.  相似文献   

12.
This study aimed to investigate the separation performance of a cyclone separator after reshaping its cylindrical body by installing the helical triangular fins. A numerical simulation based on Fluent was adopted to perform an orthogonal test to optimise the structure of the cyclone separator with helical triangular fins. Three structural parameters of the helical triangular fins were selected as optimisation variables: base width, fin size, and fin pitch, and their influences on the evaluation indices of the cut-off diameter were investigated. The optimal combination scheme was determined by range analysis, and the cyclone separator performances before and after optimisation were compared and analysed. The significant influence of the structural parameters on the cut-off diameter was in descending order as the fin pitch, fin size, and base width. For particles with diameter of 0.1, 0.5, 1, 2, and 3 μm, the separation efficiency of the cyclone separator with optimized helical triangular fins increased by 7.4 %, 15.9 %, 20.1 %, 10.9 % and 14.8 % respectively. Moreover, the cut-off diameter of the finned cyclone separator is reduced by 30.7 %, while the pressure drop is only increased by 6.6 %. The short circuit flow and back-mixing were alleviated, thereby considerably enhancing the stability of the flow field. Therefore, the finned cyclone separator was found to play a critical role in increasing the separation of fine particulate matter.  相似文献   

13.
The three slit-type separator is a new separator which can shorten the residence time of oil & gas and improve the separation efficiency. In this study, a critical validation was carried out to examine the separation performances of the three slit-type separator with different inlet velocity and inlet concentration. According to the experimental results, the separation efficiency and pressure drop of the three slit-type separator increase with the increase of inlet velocity and inlet concentration. Numerical simulation of the gas–solid flow field in the three slit-type separator was carried out by the use of Fluent 15.0 platform. The simulated results coincide with the experimental results. The particles move along the inside wall of the separator in the vaulted space, meanwhile, more gas enters into the exhaust pipe through slots, which can improve the separation efficiency. The study shows that the residence time of oil and gas is less than 0.6 and the separation efficiency is up to 99% in the separator, in addition, the pressure drop could be controlled in 4 kPa below.  相似文献   

14.
Triboelectric separation is a method for separating dry particulate systems due to their different electrostatic chargeability. Previous applications are limited to the separation of coarse powders. The aim of the present study is to examine the influence of the flow conditions and the influence of the electric field strength on the separation efficiency of starch and protein particles. Very fine organic powders are separated in a simple bench scale electrostatic separator to extend this technique to powders below 50?µm. The influence of different gas flow rates in the turbulent flow regime on particle charging and subsequent separation is investigated.As an organic model substrate, a mixture of barley starch and whey protein was used. The tribocharger consists of a PTFE charging tube and a rectangular separation chamber where an electric field is applied between two electrodes. The particles are conveyed through the charging tube and charged by frictional contact with the tube wall. It is shown that different gas flow rates at a turbulent flow regime in the charging tube did not change the separation characteristics. In contrast, increasing electrical field strength increases separation efficiency of protein particles regardless of gas flow conditions. The proportion of starch at the anode is the same for all the investigated parameters.  相似文献   

15.
Here, an axial flow cyclone separator is design is proposed. The effects of varying the structural parameters and operating conditions on pressure drops and separation efficiency were investigated via a numerical simulation approach. The results show that of the three structural parameters considered, the distance between the diffuser and blade is the most significant factor impacting separation performance compared to the blade pitch and blade shaft diameter. Increasing the distance between conical outlet and blade can decrease its pressure drops and increase separation efficiency; while increasing the shaft diameter can increase pressure drops, and the increasing blade pitch can decrease both the pressure drop and the separation efficiency. The pressure drop of the optimized swirl tube was 102.1 Pa, with a corresponding separation efficiency of 95.04% for 100 μm particles at an extraction ratio of 10%. Further, the cut-off particle size can reach 3 μm, demonstrating that the swirl tube offers good separation performance and has the potential to be widely applied in industrial gas–solid separation applications.  相似文献   

16.
A novel two-stage dynamic separator called high-gravity cyclone separator (HGCS) has been designed for gas–liquid separation. It is mainly composed of a cyclone chamber and rotary drum. In this study, its performance, including the separation efficiency and pressure drop, is experimentally investigated, and the effects of the operating conditions and drum parameters are evaluated. For droplets with a mean diameter of 7 μm, the results indicate that the optimal gas inlet velocity and high-gravity factor are 12 m/s and 59.4, respectively, and the separation efficiency reaches 98 %. The effect of liquid concentration is sensitive to the high-gravity factor. At a liquid concentration of 57 g/m3, the maximum efficiency will be 98.75 % when increasing the high-gravity factor to 85.6. Furthermore, a smaller radial height is preferable when the gas inlet velocity is greater than 12 m/s, and a better separation efficiency can be obtained by increasing the drum length to 190 mm. However, when the length is 235 mm, the efficiency will be poor because of the Kelvin–Helmholtz and Rayleigh–Taylor instabilities. Compared with the predominant roles of gas inlet velocity, drum length and radial height in pressure drop, the effects of liquid concentration and high-gravity factor are small.  相似文献   

17.
郝鹏飞  何枫  朱克勤 《工程力学》2006,23(Z1):30-34
研究旨在确定微管道内流动从层流到湍流转捩的临界雷诺数。利用微观粒子图像测速技术(Micro-PIV)研究了去离子水在内径为230μm的圆形截面玻璃微管道内的流场结构,得到了从层流到充分发展湍流各流动状态下的轴向平均速度分布和湍流度分布,实验雷诺数为1020~3145,同时研究了微管道内的流动阻力特性。平均速度场和脉动速度场的实验结果表明微管道内从层流到湍流的转捩发生在Re=1800~1900左右,与流动阻力的测量结果一致,与宏观流动比较,并未发现微管道内的流动转捩有明显提前。实验结果还显示,当Re>2700时,微管道内的平均流速分布和相对湍流度分布呈现典型的充分发展湍流状态特征。  相似文献   

18.
《Advanced Powder Technology》2020,31(9):3706-3714
Cyclones are generally operated in series when the efficiency of a single cyclone is not sufficient for the process. This study firstly used computational particle fluid dynamics (CPFD) to simulate the gas-solid two-phase flow characteristics in a two-stage series cyclone separator. The separation efficiency and distribution of energy consumption was interpreted by analyzing particle distribution characteristics. Secondly, the structure of the two-stage cyclone separator was optimized via response surface methodology (RSM) to make up for the disadvantage that the distribution of the separation load was non-uniform. The results showed that the grade efficiency for 3 μm of the first-stage cyclone separator was increased from 45.408% to 59.932% compared to the original model. The pressure drop of the first-stage cyclone separator is about 2.147 kPa while the second-stage cyclone separator is about 2.774 kPa. It can be seen that the overall optimized two-stage cyclone separator has the advantages of high efficiency, low energy consumption and load-balanced separation performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号