首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New drug delivery system (ZnO@CMS) of the redox and pH dual‐stimuli responsive based on colloidal mesoporous silica nanoparticles (CMS) has been designed, in which zinc oxide quantum dots (ZnO QDs) as a capping agent was conjugated on the surface of nanoparticles by amide bonds. The release behaviour of doxorubicin (DOX) as the model drug from ZnO@CMS (ZnO@CMS‐DOX) indicated the redox and pH dual‐stimuli responsive properties due to the acidic dissolution of ZnO QDs and cleavage of the disulphide bonds. The haemolysis and bovine serum albumin adsorption assays showed that the modification of ZnO QDs on the mesoporous silica nanoparticles modified by mercapto groups (CMS‐SH)(ZnO@CMS) had better biocompatibility compared to CMS‐SH. The cell viability and cellular uptake tests revealed that the ZnO@CMS might achieve the antitumour effect on cancer cells due to the cytotoxicity of ZnO QDs. Therefore, ZnO@CMS might be potential nanocarriers of the drug delivery system in cancer therapy. The in vivo evaluation of ZnO@CMS would be carried out in future work.Inspec keywords: biochemistry, nanomedicine, cellular biophysics, pH, toxicology, tumours, semiconductor quantum dots, proteins, colloids, II‐VI semiconductors, mesoporous materials, silicon compounds, oxidation, cancer, drug delivery systems, zinc compounds, adsorption, molecular biophysics, nanomagnetics, drugs, biomedical materials, nanofabrication, nanoparticles, nanoporous materialsOther keywords: cancer therapy, drug delivery system, amide bonds, haemolysis, bovine serum albumin adsorption assays, mercapto groups, cancer cells, cytotoxicity, antitumour effect, redox/pH dual stimuli‐responsive zinc oxide quantum dots‐gated colloidal mesoporous silica nanoparticles, ZnO, SiO2   相似文献   

2.
A growing trend within nanomedicine has been the fabrication of self‐delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco‐friendly conditions. This study reports on green synthesis of silica nanoparticles (Si‐NPs) using Azadirachta indica leaves extract as an effective chelating agent. X‐ray diffraction analysis and Fourier transform‐infra‐red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si‐NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si‐NPs have great potential in nano‐drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano‐drug delivery.Inspec keywords: silicon compounds, nanofabrication, nanomedicine, drug delivery systems, nanoparticles, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopyOther keywords: nanosilica, streptomycin, nanoscale drug delivery, nanomedicine, silica nanoparticles, Azadirachta indica leaves extract, X‐ray diffraction analysis, Fourier transform‐infrared spectroscopy, scanning electron microscopy, cetyltrimethyl ammonium bromide, SiO2   相似文献   

3.
In this study, the authors developed pectin‐stabilised selenium nanoparticles (pectin‐SeNPs) for curcumin (Cur) encapsulation and evaluated their physicochemical properties and biological activities. Results showed that pectin‐SeNPs and Cur‐loaded pectin‐SeNPs (pectin‐SeNPs@Cur) exhibited monodisperse and homogeneous spherical structures in aqueous solutions with mean particle sizes of ∼61 and ∼119 nm, respectively. Cur was successfully encapsulated into pectin‐SeNPs through hydrogen bonding interactions with an encapsulation efficiency of ∼60.6%, a loading content of ∼7.4%, and a pH‐dependent and controlled drug release in vitro. After encapsulation was completed, pectin‐SeNPs@Cur showed enhanced water solubility (∼500‐fold), dispersibility, and storage stability compared with those of free Cur. Moreover, pectin‐SeNPs@Cur possessed significant free radical scavenging ability and antioxidant capacity in vitro, which were stronger than those of pectin‐SeNPs. Antitumour activity assay in vitro demonstrated that pectin‐SeNPs@Cur could inhibit the growth of HepG2 cells in a concentration‐dependent manner, and the nanocarrier pectin‐SeNPs exhibited a low cytotoxic activity against HepG2 cells. Therefore, the results suggested that pectin‐SeNPs could function as effective nanovectors for the enhancement of the water solubility, stability, and in vitro bioactivities of hydrophobic Cur.Inspec keywords: hydrogen bonds, selenium, nanoparticles, solubility, drug delivery systems, toxicology, hydrophobicity, free radicals, particle size, nanofabrication, cancer, nanomedicine, drugs, biomedical materials, encapsulation, cellular biophysics, pH, organic compoundsOther keywords: pectin‐decorated selenium nanoparticles, pectin‐stabilised selenium nanoparticles, curcumin encapsulation, Cur‐loaded pectin‐SeNPs, nanocarrier pectin‐SeNPs, physicochemical properties, biological properties, homogeneous spherical structures, monodisperse spherical structures, aqueous solutions, particle size, hydrogen bonding interactions, encapsulation efficiency, loading content, pH‐dependent drug release, in vitro controlled drug release, water solubility, free radical scavenging ability, in vitro antioxidant capacity, in vitro antitumour activity assay, HepG2 cells, cytotoxic activity, in vitro bioactivity, hydrophobic curcumin, Se  相似文献   

4.
Biotinylated chitosan/poly(methyl vinyl ether‐alt ‐maleic acid) (PMVEMA) copolymer was synthesised by an amide reaction in two steps. Structural characterisation was performed using 1 HNMR and Fourier transform infra‐red (FTIR) spectra. Critical micelle concentration (CMC) of the copolymer was determined by pyrene as a fluorescent probe. Doxorubicin (DOX) was loaded in the micelles by the direct dissolution method. The effects of different variables including type of copolymer, copolymer concentration, stirring rate and stirring time were studied on the physicochemical properties of the micelles including: particle size, zeta potential, release efficiency and loading efficiency of nanoparticles using an irregular factorial design. The in vitro cytotoxicity of DOX‐loaded biotin‐targeted micelles was studied in HepG2 cells which over express biotin receptors by 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay. The successful synthesis of the biotinylated copolymer of chitosan/PMVEMA was confirmed by FTIR and 1 HNMR. The optimised micelles showed the CMC of 33 μg/ml, particle size of 247 ± 2 nm, zeta potential of +9.46 mV, polydispersity index of 0.22, drug‐loading efficiency of 71% and release efficiency of 84.5 ± 1.6%. The synthesised copolymer was not cytotoxic. The cytotoxicity of DOX‐loaded in targeted micelles on HepG2 cell line was about 2.2‐fold compared with free drug.Inspec keywords: biomedical materials, cellular biophysics, dissolving, drug delivery systems, drugs, electrokinetic effects, fluorescence, Fourier transform infrared spectra, particle size, polymer blends, spectrochemical analysis, toxicologyOther keywords: 1 HNMR spectra, biotin‐targeted chitosan‐poly (methyl vinyl ether‐alt‐maleic acid) copolymeric micelles, doxorubicin delivery, amide reaction, structural characterisation, Fourier transform infrared spectra, pyrene, fluorescent probe, direct dissolution method, physicochemical properties, particle size, zeta potential, nanoparticles, irregular factorial design, in vitro cytotoxicity, DOX‐loaded biotin‐targeted micelles, 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay, polydispersity index, drug‐loading efficiency, HepG2 cell line, voltage 9.46 mV  相似文献   

5.
In the present work, the preparation, characterisation, and efficiency of two different silica nanostructures as release vehicles of Cisplatin are reported. The 1‐hexadeciltrimethyl‐ammonium bromide templating agent was used to obtain mesoporous silica nanoparticles which were later loaded with Cisplatin. While sol–gel silica was very fast prepared using an excess of acetic acid during the hydrolysis–condensation reactions of tetraethylorthosilicate and at the same time the Cisplatin was added. Several physicochemical techniques including spectroscopies, electronic microscopy, X‐ray diffraction, N2 adsorption–desorption were used to characterise the silica nanostructures. An in vitro Cisplatin release test was carried out using artificial cerebrospinal fluid. Finally, the toxicity of all silica nanostructures was tested using the C6 cancer cell line. The spectroscopic results showed the suitable stabilisation of Cisplatin into the two different silica nanostructures. A large surface area was obtained for the mesoporous silica nanoparticles, while low areas were obtained in the silica nanoparticles. Cisplatin was released faster from mesoporous silica channels than from inside of aggregates nanoparticles silica. Cisplatin alone, as well as, cisplatin released from both silica nanostructures exerted a toxic effect on cancer cells. In contrast, both silica structures without the drug did not exert any toxic effect.Inspec keywords: cellular biophysics, desorption, adsorption, biomedical materials, sol‐gel processing, silicon compounds, cancer, toxicology, nanofabrication, brain, condensation, mesoporous materials, nanoparticles, X‐ray diffraction, nanomedicine, drugs, aggregates (materials)Other keywords: mesoporous silica channels, silica‐based nanoparticles, cancer brain cells, silica nanostructures, 1‐hexadeciltrimethyl‐ammonium bromide, mesoporous silica nanoparticles, sol‐gel silica, C6 cancer cell line, in vitro cisplatin release test, C6 cancer cell line, acetic acid, hydrolysis‐condensation reactions, tetraethylorthosilicate, physicochemical techniques, electronic microscopy, X‐ray diffraction, N2 adsorption‐desorption, artificial cerebrospinal fluid, toxicity, toxic effect, N2 , SiO2   相似文献   

6.
Effective and targeted delivery of the antitumour drugs towards the specific cancer spot is the major motive of drug delivery. In this direction, suitably functionalised magnetic iron oxide nanoparticles (NPs) have been utilised as a theranostic agent for imaging, hyperthermia and drug delivery applications. Herein, the authors reported the preparation of multifunctional polyethyleneglycol‐diamine functionalised mesoporous superparamagnetic iron oxide NPs (SPION) prepared by a facile solvothermal method for biomedical applications. To endow targeting ability towards tumour site, folic acid (FA) is attached to the amine groups which are present on the NPs surface by 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride/N‐hydroxysuccinimide chemistry. FA attached SPION shows good colloidal stability and possesses high drug‐loading efficiency of ∼ 96% owing to its mesoporous nature and the electrostatic attachment of daunosamine (NH3 +) group of doxorubicin (DOX) towards the negative surface charge of carboxyl and hydroxyl group. The NPs possess superior magnetic properties in result endowed with high hyperthermic ability under alternating magnetic field reaching the hyperthermic temperature of 43°C within 223 s at NP''s concentration of 1 mg/ml. The functionalised NPs possess non‐appreciable toxicity in breast cancer cells (MCF‐7) which is triggered under DOX‐loaded SPION.Inspec keywords: nanoparticles, nanocomposites, mesoporous materials, colloids, biochemistry, nanomagnetics, molecular biophysics, tumours, superparamagnetism, drugs, toxicology, biomedical materials, nanofabrication, hyperthermia, cancer, magnetic particles, cellular biophysics, nanomedicine, iron compounds, drug delivery systems, filled polymers, biological organs, liquid phase depositionOther keywords: NP surface, colloidal stability, drug‐loading efficiency, hydroxyl group, magnetic properties, high hyperthermic ability, magnetic field, DOX‐loaded SPION, folate encapsulation, targeted delivery, antitumour drugs, specific cancer spot, magnetic iron oxide nanoparticles, theranostic agent, drug delivery applications, multifunctional polyethyleneglycol‐diamine, facile solvothermal method, biomedical applications, tumour site, amine groups, mesoporous superparamagnetic nanoparticles, PEG‐diamine grafted mesoporous nanoparticles, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride‐N‐hydroxysuccinimide chemistry, daunosamine group, carboxyl group, breast cancer cells, temperature 43.0 degC, Fe3 O4   相似文献   

7.
The purpose of the present study was to compare mesoporous and fumed silica nanoparticles (NPs) to enhance the aqueous solubility and oral bioavailability of raloxifene hydrochloride (RH). Mesoporous silica NPs (MSNs) and fumed silica NPs were used by freeze‐drying or spray‐drying methods. MSNs were obtained with different ratios of cetyltrimethylammonium bromide. Saturation solubility of the NPs was compared with the pure drug. The optimised formulation was characterised by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and differential scanning calorimetry. The pharmacokinetic studies were done by oral administration of a single dose of 15 mg/kg of pure drug or fumed silica NPs of RH in Wistar rats. MSNs enhanced the solubility of RH from 19.88 ± 0.12 to 76.5 μg/ml. Freeze‐dried fumed silica increased the solubility of the drug more than MSNs (140.17 ± 0.45 μg/ml). However, the spray‐dried fumed silica caused about 26‐fold enhancement in its solubility (525.7 ± 93.5 μg/ml). Increasing the ratio of silica NPs enhanced the drug solubility. The results of XRD and SEM analyses displayed RH were in the amorphous state in the NPs. Oral bioavailability of NPs showed 3.5‐fold increase compared to the pure drug. The RH loaded fumed silica NPs prepared by spray‐drying technique could more enhance the solubility and oral bioavailability of RH.Inspec keywords: differential scanning calorimetry, mesoporous materials, freezing, nanofabrication, drug delivery systems, silicon compounds, drying, drugs, solubility, spraying, X‐ray diffraction, biomedical materials, scanning electron microscopy, nanoparticles, biochemistry, amorphous state, nanomedicineOther keywords: freeze‐dried fumed silica, spray‐dried, drug solubility, spray‐drying technique, fumed silica nanoparticles, mesoporous silica nanoparticles, aqueous solubility, mesoporous silica NPs, freeze‐drying, saturation solubility, differential scanning calorimetry, oral administration, fumed silica NPs  相似文献   

8.
Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti‐cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti‐cancer activity is elucidated with MCF‐7 cell death. Structural characteristics of Mobil Composition of Matter ‐ 41(MCM‐41) as determined by high‐resolution transmission electron microscopy (HR‐TEM) shows that MCM‐41 size ranges from 100 to 200 nm diameters with pore size 2–10 nm for drug adsorption. The authors found 80–90% of curcumin is loaded on MCM‐41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin‐loaded MCM‐41 induced 50% mortality of MCF‐7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM‐41 effectively decreased cell survival of MCF‐7 cells in vitro.Inspec keywords: cancer, cellular biophysics, nanoparticles, nanomedicine, biomedical materials, polymers, mesoporous materials, transmission electron microscopy, drugs, adsorptionOther keywords: polyethylenimine‐modified curcumin‐loaded mesoporus silica nanoparticle, MCF‐7 cell line, breast cancer, cancer cells, drug resistance, multipotent activity, therapeutic potential, anticancer drug, mesoporous silica nanoparticle, MCF‐7 cell death, high‐resolution transmission electron microscopy, drug adsorption, curcumin‐loaded MCM‐41, nutraceutical curcumin, size 2 nm to 10 nm, size 100 nm to 200 nm  相似文献   

9.
A glucose-mediated drug delivery system would be highly satisfactory fordiabetes diagnosis since it can intelligently release drug based on blood glucose levels.Herein,a glucose-responsive drug delivery system by integrating glucose-responsivepoly(3-acrylamidophenylboronic acid)(PAPBA)functionalized hollow mesoporous silicananoparticles(HMSNs)with transcutaneous microneedles(MNs)has been designed.Thegrafted PAPBA serves as gatekeeper to prevent drug release from HMSNs atnormoglycemic levels.In contrast,faster drug release is detected at a typicalhyperglycemic level,which is due to the change of hydrophilicity of PAPBA at highglucose concentration.After transdermal administration to diabetic rats,an effectivehypoglycemic effect is achieved compared with that of subcutaneous injection.Theseobservations indicate that the designed glucose-responsive drug delivery system has apotential application in diabetes treatment.  相似文献   

10.
To sustained release of an anticancer drug, oxaliplatin (OX), a non‐toxic and biocompatible nanocarrier based on bovine serum albumin (BSA) were synthesised by desolvation method and characterised using Fourier‐transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and dynamic light scattering. The results showed that the BSA nanoparticles (BSANPs) with a mean magnitude of 187.9 ± 1.2 nm have spherical morphology with a smooth surface and a uniform distribution. Furthermore, OX was loaded onto the BSANPs and the loading was confirmed by FTIR, AFM and FESEM techniques. The percentage of encapsulation efficiency and drug loading were determined by absorption spectroscopy (UV–vis). The drug release studies showed that release of OX from BSANPs exhibited slower release rate. However, the release kinetics followed the first‐order kinetic for both of them with the non‐Fickian release behaviour. The electrochemical analysis showed stability of OX loaded onto the BSANPs (OX@BSANPs) and confirmed the diffusion mechanism. Furthermore, the results of MTT assay revealed increasing of normal cell viability and cancer cell death in the OX@BSANPs compared to only OX. It was shown that the BSANPs could be safely used as a biocompatible nanocarrier for the sustained release of OX.Inspec keywords: nanoparticles, drug delivery systems, molecular biophysics, encapsulation, cancer, proteins, drugs, cellular biophysics, light scattering, nanofabrication, atomic force microscopy, biomedical materials, diffusion, toxicology, nanomedicine, field emission scanning electron microscopy, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, surface morphologyOther keywords: cytotoxicity, biocompatible nanocarrier, bovine serum albumin nanoparticles, desolvation method, atomic force microscopy, dynamic light scattering, BSA nanoparticles, FESEM, UV‐visible absorption spectroscopy, drug release rate, nonFickian release behaviour, oxaliplatin anticancer drug, Fourier‐transform infrared spectroscopy, FTIR spectroscopy, spherical morphology, encapsulation efficiency, release kinetics, first‐order kinetics, electrochemical analysis, diffusion mechanism, MTT assay, cell viability, cancer cell death  相似文献   

11.
The aim of this study was preparation and optimisation of a controlled‐release delivery system to decrease the dose‐dependent side effects of gentamicin. Hydrogel nanoparticles composed of a polycationic polymer (chitosan) and an inorganic polyanion (sodium tripolyphosphate) were fabricated in the presence of gentamicin. An experimental design was drawn upon to determine the optimum condition of nanoparticle preparation. Various features of the nanoparticles including drug loading parameters, particle size distribution, zeta potential and in vitro drug release profile were evaluated. Ultimately, the antimicrobial activity of the gentamicin‐loaded nanoparticles was analysed by determination of the minimum inhibitory concentration (MIC) and the potency test. As a result, the nanocarriers with an average size of about 250 nm (unloaded) and 493 nm (gentamicin‐loaded) were obtained with unimodal distribution and a notable polydispersity index (≤0.3). The drug loading efficiency was between 28 and 32%. The gradual and sustained releases (∼90%) of gentamicin were achieved in 24 h. The MIC and potency test showed no significant decrease in the antibacterial activity of gentamicin‐loaded nanoparticles. The outcomes demonstrated that the optimised chitosan nanogels prepared in this study can be considered as a suitable carrier for a controlled release system.Inspec keywords: hydrogels, nanoparticles, drug delivery systems, particle size, electrokinetic effects, antibacterial activity, nanomedicineOther keywords: factorial design analysis, chitosan‐based nanogels, gentamicin, controlled‐release delivery system, hydrogel nanoparticles, polycationic polymer, inorganic polyanion, sodium tripolyphosphate, particle size distribution, drug loading parameters, zeta potential, in vitro drug release profile, antimicrobial activity, minimum inhibitory concentration, polydispersity index, drug loading efficiency, antibacterial activity  相似文献   

12.
Poly‐methyl methacrylate (PMMA) polymer with remarkable properties and merits are being preferred in various biomedical applications due to its biocompatibility, non‐toxicity and cost effectiveness. In this investigation, oxytetracycline‐loaded PMMA nanoparticles were prepared using nano‐precipitation method for the treatment of anaplasmosis. The prepared nanoparticles were characterised using dynamic light scattering (DLS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The mean average diameter of the nanoparticles ranged between 190–240 nm and zeta potential was found to be −19 mV. The drug loading capacity and entrapment efficiency of nanoparticles was found varied between 33.7–62.2% and 40.5–60.0%. The in vitro drug release profile exhibited a biphasic phenomenon indicating controlled drug release. The uptake of coumarin‐6(C‐6)‐loaded PMMA nanoparticles in Plasmodium falciparum (Pf 3D7) culture model was studied. The preferential uptake of C‐6‐loaded nanoparticles by the Plasmodium infected erythrocytes in comparison with the uninfected erythrocytes was observed under fluorescence microscopy. These findings suggest that oxytetracycline‐loaded PMMA nanoparticles were found to be an effective oral delivery vehicle and an alternative pharmaceutical formulation in anaplasmosis treatment, too.Inspec keywords: nanoparticles, nanomedicine, conducting polymers, microorganisms, cellular biophysics, toxicology, drug delivery systems, light scattering, atomic force microscopy, differential scanning calorimetry, Fourier transform infrared spectra, bloodOther keywords: in vitro evaluation, oxytetracycline‐loaded PMMA nanoparticles, anaplasmosis, polymethyl methacrylate polymer, biocompatibility, toxicity, oxytetracycline‐nanoparticles, nanoprecipitation method, dynamic light scattering, atomic force microscopy, AFM, differential scanning calorimetry, DSC, Fourier transform infrared spectroscopy, FTIR spectroscopy, zeta potential, drug loading capacity, entrapment efficiency, in vitro drug release profile, biphasic phenomenon, coumarin‐6(C‐6)‐loaded PMMA nanoparticles, plasmodium falciparum culture model, preferential uptake, plasmodium infected erythrocytes, fluorescence microscopy, oral delivery vehicle, anaplasmosis treatment, size 190 nm to 240 nm  相似文献   

13.
Qin  Yipeng  Huang  Yuhan  Li  Min  Ren  Bo  Wang  Pan  Zhong  Qidi  Liu  Chunyan 《Journal of Materials Science》2021,56(21):12412-12422

Novel thermal nanoparticles [hollow mesoporous silica nanospheres (HMSNs)–poly (N-isopropyl acrylamide-acrylic acid) PNIPAM-AA] were developed with Ag nanoparticles (AgNps) as the core, mesoporous silica nanoparticles as the layer, and thermally responsive polymers PNIPAM-AA as the shell. The AgNps had good photothermal effects, PNIPAM-AA was responsive to temperature, the combination of AgNps and PNIPAM-AA could be used as a photothermal-responsive switch for drug release, and HMSNs greatly increased the drug loading of the carrier. The samples were characterized by means of scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption, thermogravimetric analysis, Fourier transform infrared spectroscopy, and UV–Vis absorption spectra. The results showed that Ag@HMSN nanoparticles possessed a uniform diameter (330 nm), high specific surface area (822.45 m2/g), and mesoporous pore size (2.75 nm). Using ibuprofen (IBU) as a model drug, the release process was monitored under in vitro conditions to investigate its release characteristics at different temperatures. The results showed that the nanoparticles had a significant regulatory effect on IBU release.

Graphical abstract
  相似文献   

14.
This report investigates the spraying of nano‐silica and fullerene on cucumber leaves to expose their ability to reduce the toxicity and uptake of metal(loid)s. Cucumber seedlings were randomly divided into six treatment groups: 10 mg/L nano‐SiO2, 20 mg/L nano‐SiO2, 10 mg/L Fullerene, 20 mg/L Fullerene, 5 mg/L Fullerene + 5 mg/L nano‐SiO2, and 10 mg/L Fullerene + 10 mg/L nano‐SiO2. Nano‐silica‐treated plants exhibited evidence of the potential mitigation of metal(loid)s poisoning. Specifically, results showed that 20 mg/L of nano‐silica promoted Cd uptake by plants; comparatively, 10 mg/L of nano‐silica did not significantly increase the silicon content in plants. Both low‐concentration combined treatment and low‐concentration fullerene groups inhibited metal(loid)s uptake by plants. Scanning electron microscopy (SEM) was then used to observe the surface morphology of cucumber leaves. Significant differences were observed on disease resistance in plants across the different nano‐material conditions. Collectively, these findings suggest that both nano‐silica materials and fullerene have the potential to control metal(loid)s toxicity in plants.Inspec keywords: soil pollution, cadmium, silicon compounds, surface morphology, fullerenes, toxicology, fertilisers, scanning electron microscopy, crops, spraying, nanoparticles, sorption, plant diseases, agricultural safetyOther keywords: cucumber leaves, nanosilica materials, fullerene, spraying process, metalloids absorption, toxicity, scanning electron microscopy, surface morphology, disease resistance, soil pollution, SiO2 , Cd  相似文献   

15.
The present investigation deals with successful synthesis and surface functionalisation of mesoporous alumina (MeAl) nanoparticles by simplified sol–gel method using cetyl trimethyl ammonium bromide (CTAB) and pluronic as a template. Surface functionalisation of MeAl was performed to determine the selectivity of surface groups for coupling with model drug molecule. Repaglinide a BCS class II drug was loaded as a model drug on synthesised MeAl nanoparticle and studied for its sustained release capability. The synthesised and repaglinide loaded MeAl nanoparticles were characterised by Fourier transform infrared Spectroscopy, X‐ray diffraction, field emission scanning electron microscopy with EDAX, Transmission electron microscopy and differential scanning calorimetric. Results from the dissolution study confirmed the sustained release behaviour of the nanparticles which was up to 24 h. The cell viability assay demonstrated that 0.2 to 1 mg/ml concentration of MeAl was significantly less cytotoxic to the Chinese Hamster Ovary (CHO) cells. The authors’ experimental studies suggest that MeAl can be used as drug carrier and have a potential to increase the stability, loading efficiency and patient compliance for poorly water‐soluble drugs such as repaglinide.Inspec keywords: mesoporous materials, nanoparticles, nanomedicine, alumina, surface chemistry, cellular biophysics, toxicology, sol‐gel processing, Fourier transform infrared spectra, field emission electron microscopy, X‐ray chemical analysis, transmission electron microscopy, drug delivery systemsOther keywords: surface engineered mesoporous alumina nanoparticles, drug release aspects, cytotoxicity assessment, surface functionalisation, sol–gel method, cetyl trimethyl ammonium bromide, CTAB, pluronic, MeAl, model drug molecule, repaglinide, BCS class II drug, Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy, EDAX, transmission electron microscopy, differential scanning calorimetry, cell viability assay, Chinese Hamster Ovary cells, drug carrier, poorly water‐soluble drugs, Al2 O3   相似文献   

16.
With the rising threat of cancers, gold nanorods (GNRs) based photothermal–chemotherapy is becoming an increasingly important strategy to cure cancers. There are some challenges faced by GNRs system including complicated synthesis process and low drug loading capacity. In this study, GNRs assisted mesoporous silica nanoparticles (GNR@SiO2 NPs) are fabricated by a simple method. The mesoporous SiO2 can not only prevent the aggregation of GNRs but also provide large hollow mesoporous structure to enhance drug loading capacity. Moreover, GNRs absorb near‐infrared (NIR) light and convert it into heat. The temperature of the GNR@SiO2 solution was increased to ∼60 (2 W) and 90°C (3 W) after NIR radiation. The photothermal conversion efficiency was 32.60% of GNR@SiO2 under NIR light irradiation at 2 W, while 39.01% under NIR light irradiation at 3 W. The drug loading content of GNR@SiO2 was 22.3 ± 2.5%, which was higher than that of most reported GNR drug delivery systems. The authors also found that the GNR@SiO2 @ doxorubicin may have a higher drug release rate under the conditions of the tumour microenvironment. The in vitro cytotoxity of GNR@SiO2 was demonstrated on HeLa cells. The experimental results indicate that GNR@SiO2 has great potential for synergistic treatment to kill cancer cells.Inspec keywords: nanomedicine, cancer, nanofabrication, nanoparticles, silicon compounds, nanorods, cellular biophysics, photothermal effects, drug delivery systems, toxicology, biomedical materials, drugs, mesoporous materials, tumours, gold, biothermicsOther keywords: enhanced drug loading content, NIR light irradiation, GNR drug delivery systems, complicated synthesis process, drug loading capacity, mesoporous silica nanoparticles, photothermal nanomaterial, gold nanorods, photothermal–chemotherapy, SiO2 , efficiency 39.01 percent, efficiency 32.60 percent, power 3.0 W, power 2.0 W, temperature 90.0 degC, cancer cells, HeLa cells, in vitro cytotoxity, tumour microenvironment, drug release rate, doxorubicin, photothermal conversion efficiency, aggregation  相似文献   

17.
Honokiol (HK) is a natural product isolated from the bark, cones, seeds and leaves of plants belonging to the genus Magnolia. It possesses anti‐cancer activity which can efficiently impede the growth and bring about apoptosis of a diversity of cancer cells. The major concerns of using HK are its poor solubility and lack of targeted drug delivery. In this study, a combinatorial drug is prepared by combining HK and camptothecin (CPT). Both CPT and HK belong to the Magnolian genus and induce apoptosis by cell cycle arrest at the S‐phase and G1 phase, respectively. The combinatorial drug thus synthesised was loaded onto a chitosan functionalised graphene oxide nanoparticles, predecorated with folic acid for site‐specific drug delivery. The CPT drug‐loaded nanocarrier was characterised by X‐ray diffractometer, scanning electron microscope, transmission electron microscope, UV–vis spectroscopy and fluorescence spectroscopy, atomic force microscopy. The antioxidant properties, haemolytic activity and anti‐inflammatory activities were analysed. The cellular toxicity was analysed by 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐Diphenyltetrazolium Bromide (MTT assay) and Sulforhodamine B (SRB) assay against breast cancer (MCF‐7) cell lines.Inspec keywords: nanofabrication, cancer, nanoparticles, atomic force microscopy, graphene, scanning electron microscopy, cellular biophysics, toxicology, transmission electron microscopy, drug delivery systems, nanomedicine, tumours, solubilityOther keywords: targeted drug delivery, combinatorial drug, Magnolian genus, apoptosis, cell cycle, chitosan functionalised graphene oxide nanoparticles, site‐specific drug delivery, CPT drug‐loaded nanocarrier, transmission electron microscope, fluorescence spectroscopy, haemolytic activity, antiinflammatory activities, breast cancer cell lines, honokiol–camptothecin loaded graphene oxide nanoparticle, combinatorial anti‐cancer drug delivery, natural product, genus Magnolia, anticancer activity, cancer cells  相似文献   

18.
The main goal of this study was to synthesise and characterise different formulations based on alginate and alginate/chitosan microspheres containing nanoselenium (nano‐Se) for controlled delivery applications. Nanosize elemental selenium was produced by using probiotic yogurt bacteria (Lactobacillus casei) in a fermentation procedure. The structural and morphological characterisation of the microspheres was performed by Fourier transform infrared (FTIR), X‐ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. FTIR and XRD pattern indicated that was an effective cross‐linking of selenium nanoparticles within the polymeric matrix in both cases. The SEM images reveal that selenium nanoparticles are mainly exposed on the surface of alginate, in contrast to porous structure of alginate/chitosan/nano‐Se, interconnected in a regular network. This architecture type has a considerable importance in the delivery process, as demonstrated by differential pulse voltammetry. Selenium release from both matrices is pH sensitive. Moreover, chitosan blended with alginate minimise the release of encapsulated selenium, in simulated gastric fluid, and prolong the duration of release in intestinal fluid. The overall effect is the enhancement of total percentage release concomitant with the longer duration of action. The authors’ formulation based on alginate/chitosan is a convenient matrix to be used for selenium delivery in duodenum, caecum and colon.Inspec keywords: organic‐inorganic hybrid materials, nanocomposites, blending, filled polymers, nanoparticles, nanofabrication, nanomedicine, biomedical materials, drug delivery systems, microorganisms, biological organs, selenium, polymer blends, fermentation, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectra, surface morphology, nanoporous materials, porosity, pH, voltammetry (chemical analysis), encapsulationOther keywords: structural characterisation, hybrid microspheres entrapping nanoselenium, green synthesis, alginate‐chitosan microspheres, controlled delivery applications, nanosize elemental selenium, probiotic yogurt bacteria, Lactobacillus casei, fermentation, scanning electron microscopy, morphological characterisation, SEM, Fourier transform infrared spectra, FTIR, XRD, X‐ray diffraction, selenium nanoparticles, polymeric matrix, porous structure, differential pulse voltammetry, pH, blending, encapsulated selenium, simulated gastric fluid, intestinal fluid, total percentage release concomitant, duodenum, caecum, colon, Se  相似文献   

19.
Chemically modified mesoporous silica nanoparticles (MSNs) are of interest due to their chemical and thermal stability with adjustable morphology and porosity; therefore, it was aimed to develop and compare the MCM‐41 MSNs functionalised with imidazole groups (MCM‐41‐Im) to unmodified (MCM‐41‐OH) and primary amine functionalised (MCM‐41‐NH2) MSNs for experimental gene delivery. The results show efficient transfection of the complexes of the plasmid and either MCM‐41‐NH2 or MCM‐41‐Im. Furthermore, following transfection of HeLa cells using MCM‐41‐Im, an enhanced GFP expression was achieved consistent with the noticeable DNase1 protection and endosomal escape properties of MCM‐41‐Im using carboxyfluorescein tracer.Inspec keywords: condensation, mesoporous materials, silicon compounds, nanoparticles, DNA, surface chemistry, porosity, gene therapy, cellular biophysics, biomedical materials, nanomedicine, nanofabrication, molecular biophysics, biochemistryOther keywords: co‐condensation synthesis, surface chemical modification, plasmid DNA condensation, plasmid DNA transfection, chemical modified mesoporous silica nanoparticles, chemical stability, thermal stability, adjustable morphology, porosity, MCM‐41 MSN functionalisation, imidazole groups, MCM‐41‐OH, primary amine functionalised MSN, gene delivery, HeLa cell transfection, GFP expression, DNase1 protection, endosomal escape properties, carboxyfluorescein tracer, SiO2   相似文献   

20.
This study investigated the cellular uptake of fluorescein isothiocyanate‐labelled mesoporous silica nanoparticles (FITC‐MSNs), amine‐functionalised FITC‐MSNs (AP‐FITC‐MSNs) and their gallic acid (GA)‐loaded counterparts. Mesoporous silica nanoparticles were labelled with fluorescein isothiocyanate, functionalised by 3‐aminopropyltriethoxysilane (APTES) (AP‐FITC‐MSNs) and then loaded by GA. All nanoparticles were characterised by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, and X‐ray diffraction. The cytotoxicity of different concentrations of dyed nanoparticles was investigated using (3‐(4,5‐trihydroxybenzoic acid, dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay and flow cytometry. TEM images showed that the average particle sizes of FITC‐MSNs and AP‐FITC‐MSNs were about 100 and 110 nm, respectively. These nanoparticles were internalised by Caco‐2 cells, accumulated and dispersed into the cytoplasm, nucleus, and subcellular organelles. Nanoparticles containing GA clearly decreased the viability of cells. FITC‐MSNs showed no toxicity on Caco‐2 cells at concentrations of ≤50 µg/ml. Functionalisation of FITC‐MSNs using APTES decreased toxicity effects on the cells. It was found that FITC‐MSNs can be applied at low concentrations as a marker in the cells. In addition, AP‐FITC‐MSNs showed better biocompatibility with Caco‐2 cells than FITC‐MSNs, because of their positive surface charges.Inspec keywords: mesoporous materials, porosity, nanoparticles, dyes, silicon compounds, nanocomposites, nanofabrication, nanomedicine, cellular biophysics, molecular biophysics, biochemistry, transmission electron microscopy, Fourier transform infrared spectra, X‐ray diffraction, toxicology, particle size, biomedical materials, surface charging, cancerOther keywords: fluorescein isothiocyanate‐dyed mesoporous silica nanoparticles, antioxidant delivery tracking, cellular uptake, amine‐functionalised FITC‐MSNs, gallic acid‐loaded counterparts, 3‐aminopropyltriethoxysilane, transmission electron microscopy, TEM, Fourier transform infrared spectroscopy, X‐ray diffraction, cytotoxicity, dyed nanoparticles, (3‐(4,5‐trihydroxybenzoic acid‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay, flow cytometry, particle sizes, AP‐FITC‐MSNs, Caco‐2 cells, cytoplasm, subcellular organelles, cell viability, biocompatibility, positive surface charges, SiO2   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号