首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examined the feasibility of preparing high performance gap-graded blended cements by adding fine and coarse supplementary cementitious material (SCM) fractions into commercial Portland cement, and the efficiency of SCMs in gap-graded blended cements and interground blended cements were comparatively evaluated. The results show that the particle size distribution of gap-graded blended cements was much closer to a Fuller distribution, due to the intentional addition of fine and coarse SCMs, resulting in a higher initial packing density. As granulated blast furnace slag (GBFS) was mainly arranged in the fine fraction of the gap-graded blended cements, its efficiency was increased dramatically, contributing to 43.5% of the total measured hydration products. As a result, gap-graded blended cement pastes presented a homogeneous and dense microstructure due to “grain size refinement” and “pore size refinement”, therefore their setting times were decreased significantly, and both early and late strengths were increased remarkably in comparison to the interground blended cements investigated in this study.  相似文献   

2.
To achieve sustainable development of cement industry, cementitious efficiency of different cement clinker and supplementary cementitious materials (SCMs) fractions, in terms of hydration process and strength contribution ratio, was characterized. The results show that blast furnace slag and steel slag should preferably be arranged in fine fractions due to their desirable hydration processes and high strength contribution ratios. Cement clinker should be positioned in intermediate fraction (8–24 μm) due to its proper hydration process. Replacement of cement clinker by SCMs with low activity or inert fillers in coarse fractions was also suggested, because coarse cement clinker fractions gave very low hydration degrees and little strength contribution. Both early and late properties of gap-graded blended cements prepared can be comparable with or higher than those of Portland cement, indicating both cement clinker and SCMs were used more efficiently. These blended cements also give additional cost savings and reduced environmental impact.  相似文献   

3.
The hydration of slag,part 2: reaction models for blended cement   总被引:2,自引:0,他引:2  
The hydration of slag-blended cement is studied by considering the interaction between the hydrations of slag and Portland cement clinker. Three reaction models for the slag-blended cement are developed based on stoichiometric calculations. These models correlate the compositions of the unhydrated slag-blended cement with the quantities and compositions of the hydration products. The model predictions are further used to calculate some properties of hydrating slag cement pastes, including the molar fractions of products, the water retention, chemical shrinkage and porosities of pastes. The models are validated by comparing the model predictions with the measurements and proven to be successful in quantifying the hydration products, predicting the composition of the main hydration product (C-S-H) and calculating the properties of the hydration process. The model predictions show that as the slag proportions in the blended cement changes, water retention in the hydration products changes only slightly if compared to that of Portland cement, but the chemical shrinkage can vary in a wide range, depending on the slag hydration degree in the cement.  相似文献   

4.
This investigation elucidates the pozzolanic behavior of waste glass blended cement (WGBC) paste used in thin film transistor liquid crystal displays (TFT-LCD). X-ray diffraction (XRD) results demonstrate that the TFT-LCD waste glass was entirely non-crystalline. The leaching concentrations of the clay and TFT-LCD waste glass all met the current regulatory thresholds of the Taiwan EPA. The pozzolanic strength activity indices of TFT-LCD waste glass at 28 days and 56 days were 89% and 92%, respectively. Accordingly, this material can be regarded as a good pozzolanic material. The amount of TFT-LCD waste glass that is mixed into WGBC pastes affects the strength of the pastes. The strength of the paste clearly declined as the amount of TFT-LCD waste glass increased. XRD patterns indicated that the major difference was the presence of hydrates of calcium silicate (CSH, 2 theta=32.1 degrees), aluminate and aluminosilicate, which was present in WGBC pastes. Portland cement may have increased the alkalinity of the solution and induced the decomposition of the glass phase network. WGBC pastes that contained 40% TFT-LCD waste glass have markedly lower gel/space ratios and exhibit less degree of hydration than ordinary Portland cement (OPC) pastes. The most satisfactory characteristics of the strength were observed when the mixing ratio of the TFT-LCD waste glass was 10%.  相似文献   

5.
This study assesses the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. rice husk ash (RHA), palm oil fuel ash (POFA) and river sand (RS) were ground to obtain two finenesses: one was the same size as the cement, and the other was smaller than the cement. Type I Portland cement was replaced by RHA, POFA and RS at 0%, 10%, 20%, 30% and 40% by weight of binder. A water to binder ratio (W/B) of 0.35 was used for all blended cement paste mixes. The percentages of amorphous materials and the compressive strength of the pastes due to the hydration reaction, filler effect and pozzolanic reaction were investigated. The results showed that ground rice husk ash and ground palm oil fuel ash were composed of amorphous silica material. The compressive strength of the pastes due to the hydration reaction decreased with decreasing cement content. The compressive strength of the pastes due to the filler effect increased with increasing cement replacement. The compressive strengths of the pastes due to the pozzolanic reaction were nonlinear and were fit with nonlinear isotherms that increased with increasing fineness of RHA and POFA, cement replacement rate and age of the paste. In addition, the model that was proposed to predict the percentage compressive strength of the blended cement pastes on the basis of the age of the paste and the percentage replacement with biomass ash was in good agreement with the experimental results. The optimum replacement level of rice husk ash and palm oil fuel ash in pastes was 30% by weight of binder; this replacement percentage resulted in good compressive strengths.  相似文献   

6.
This investigation aimed to develop structural blended cement pastes with high mechanical properties for building envelope purposes. The effect of nano silicate (NS) replacement on the properties of blended white cement pastes as compared with the control paste have been studied through the measurements of indirect tensile strength (ITS). NS was thermally activated at 850 °C for 2 h and used to partially replace Portland white cement (PWC) at different ratios. The activation effect of NS on the ITS have also been studied. The cement pastes were prepared using water of consistency. The pastes were removed from the mold after 24 h and then immersed in a water bath for hydration. The 7-day aged pastes were tested after drying for 24 h at 105 °C. Different physical properties such as thermal resistivity, solar reflectivity, water absorption and apparent porosity were measured. It was found that, activation of NS decreases the porosity allowing the blended cement paste to be denser, consequently increasing the ITS. Increasing the replacement content of unactivated NS upto 2%, improved the ITS by about 40% compared with the control paste. Also, the thermal activation of the NS has a very good influence in enhancing the ITS to about 50% with respect to the 2% unactivated blended paste. The results also showed that increasing the replacement content generally increases the water absorption and the porosity of blended white cement pastes, while, slightly improving the thermal resistivity. Activation of NS reduced the solar reflectivity of blended pastes as compared with unactivated blended pastes. An optimum replacement of around 2% can be concluded from the current work.  相似文献   

7.
Ca(OH)2解耦法对混合水泥中C-S-H凝胶的半定量研究   总被引:1,自引:0,他引:1  
基于掺合料反应程度与Ca(OH)2消耗量之间关系的建立,结合水泥水化平衡计算理论,提出混合水泥水化产物中Ca(OH)2量的解耦方法并将其用于混合水泥水化产物C-S-H凝胶半定量计算.采用该法对掺粉煤灰的混合水泥不同龄期水化产物C-S-H凝胶进行了半定量分析研究.  相似文献   

8.
Rice husk ash (RHA) has been used as a highly reactive pozzolanic material to improve the microstructure of the interfacial transition zone (ITZ) between the cement paste and the aggregate in high-performance concrete. Mechanical experiments of RHA blended Portland cement concretes revealed that in addition to the pozzolanic reactivity of RHA (chemical aspect), the particle grading (physical aspect) of cement and RHA mixtures also exerted significant influences on the blending efficiency. The relative strength increase (relative to the concrete made with plain cement, expressed in %) is higher for coarser cement. The gap-grading phenomenon is expected to be the underlying mechanism. This issue is also approached by computer simulation. A stereological spacing parameter (i.e., mean free spacing between mixture particles) is associated with the global strength of the blended model cement concretes. This paper presents results of a combined mechanical and computer simulation study on the effects of particle size ranges involved in RHA-blended Portland cement on compressive strength of gap-graded concrete in the high strength/high performance range. The simulation results demonstrate that the favourable results for coarser cement (i.e., the gap-graded binder) reflect improved particle packing structure accompanied by a decrease in porosity and particularly in particle spacing.  相似文献   

9.
This research investigates the optimization of calcium chloride content on the bioactivity and mechanical properties of white Portland cement. Calcium chloride was used as an addition of White Portland cement at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10% by weight. Calcium chloride was dissolved in sterile distilled water and blended with White Portland cement using a water to cement ratio of 0.5. Analysis of the bioactivity and pH of white Portland cement pastes with calcium chloride added at various amounts was carried out in simulated body fluid. Setting time, density, compressive strength and volume of permeable voids were also investigated. The characteristics of cement pastes were examined by X-ray diffractometer and scanning electron microscope linked to an energy-dispersive X-ray analyzer. The result indicated that the addition of calcium chloride could accelerate the hydration of white Portland cement, resulting in a decrease in setting time and an increase in early strength of the pastes. The compressive strength of all cement pastes with added calcium chloride was higher than that of the pure cement paste, and the addition of calcium chloride at 8 wt.% led to achieving the highest strength. Furthermore, white Portland cement pastes both with and without calcium chloride showed well-established bioactivity with respect to the formation of a hydroxyapatite layer on the material within 7 days following immersion in simulated body fluid; white Portland cement paste with added 3%CaCl2 exhibited the best bioactivity.  相似文献   

10.
In this study, properties and hydration characteristics as well as paste microstructure of blended cements containing 55% by weight zeolitic tuff composed mainly of clinoptilolite mineral were investigated. Free Ca(OH)2 content, crystalline hydration products and decomposition of zeolite crystal structure, pore size distribution and microstructural architecture of hydrated cement pastes were examined. Superplasticizer requirement and compressive strength development of blended cement mortars were also determined. The blended cements containing high volume of natural zeolites were characterized with the following properties; (i) no free Ca(OH)2 in hardened pastes at the end of 28 days of hydration, (ii) less proportion of the pores larger than 50 nm when compared to portland cement paste, (iii) complete decomposition of crystal structure of zeolite at the end of 28 days of hydration, (iv) presence of tetra calcium aluminate hydrate as a crystalline product of pozzolanic reaction, (v) more compatibility with the melamine-based superplasticizer when compared to the naphthalene based product, and (vi) similar 28 days compressive strength of mortars to that of reference portland cement.  相似文献   

11.
The present work studies the hydration process and microstructural features of five calcium sulfoaluminate (CSA) cements and a ternary mixture including also ordinary Portland cement (OPC). The pastes were studied with simultaneous differential thermal-thermogravimetric (DTA-TG) analysis, mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and expansion/shrinkage tests. The DTA-TG analysis confirmed the role of the hydration reactions involving the main CSA clinker constituent, tetracalcium trialuminate sulfate, which produced (i) ettringite when combined with lime and calcium sulfate, (ii) ettringite and aluminum hydroxide in the presence of calcium sulfate alone, and (iii) monosulfate and aluminum hydroxide in the absence of both lime and calcium sulfate. The MIP and SEM were able to discriminate between expansive (ternary mixture and CSA cement containing 50% gypsum) and non-expansive cements. Expansive cement pastes had (i) a nearly unimodal pore size distribution shifted toward higher radii and (ii) ettringite crystals smaller in size during the first day of curing. In a SEM image of a hardened paste of the CSA cement containing 50% gypsum, a stellate ettringite cluster was observed.  相似文献   

12.
魏亚  高翔  梁思明 《复合材料学报》2017,34(5):1122-1129
采用纳米原位压痕手段测量硬化水泥净浆中单一相态的代表性微观力学性能,并采用纳米点阵压痕研究各相态的含量。研究对象囊括水灰比为0.3、0.4、0.5的纯水泥净浆和水灰比为0.3情况下含50%、70%矿渣掺量复合体系,共5种配比,以表征它们的相态分布和微观力学性质的异同点。掺矿渣的试件中含有明显多的复合相,因此提出三相模型测算复合相中未水化物的体积分数。此外,提出基于纳米压痕技术计算纯水泥和掺矿渣水泥试件水化程度的方法,结果吻合于热重分析的结果,其中纯水泥净浆中复合相较少,计算得到的水化程度优于对掺矿渣水泥试件的计算。  相似文献   

13.
A clinker and a cement obtained from a raw mix containing ceramic waste as an alternative raw material were characterized in the present study. Their hydration, physical–chemical properties and leaching behaviour in different acid media were also explored. The findings showed that both the clinker and the cement met all the requirements set out in European standards EN 197-1 [1], although they had higher ZnO, ZrO2, and B2O3 contents than an industrially produced reference product.According to the hydration studies, initial hydration was somewhat retarded in the new cement, which exhibited longer initial and final setting times and lower 2-day mechanical strength. The SEM/BSE/EDS microstructural study showed, however, that morphologically and compositionally, the hydration products formed were comparable to unadditioned Portland cement paste products. While low concentrations of Zn and B were observed to leach in acid media, the biotoxicity trials conducted confirmed that these concentrations were not toxic. Zr was retained in the cement pastes.  相似文献   

14.
Cement pastes undergo elevated temperature histories due to hydration heat liberation at early ages. Thermal expansion coefficients of cement paste and concrete change with age, showing a decrease after mixing, a subsequent minimum and then a gradual increase. These changes contribute to thermal strain. In this study, effects of water–cement ratio and cement type on volume changes in early-age cement pastes were experimentally examined using a newly developed apparatus capable of simultaneously determining both thermal expansion coefficient and total strain of cement pastes. The dependence of the thermal expansion coefficient on hydration was affected by water–cement ratio, cement type, elevated temperature history and particularly by the free water content of the cement pastes, while the relationship between thermal expansion coefficient and free water content varied with water–cement ratio. A notable increase in thermal expansion coefficient at early ages was observed when water–cement ratio was low and alite content in cement was high. At a water–cement ratio of 0.30, low-heat Portland cement paste resulted in a small total strain while moderate-heat and ordinary Portland cement pastes showed larger strains. Because no particular difference was observed in the thermal strains, shrinkage in the low-heat Portland cement paste was attributed to autogenous strain. At a water–cement ratio of 0.40, self-desiccation had a significant influence upon autogenous shrinkage and dependence of thermal expansion coefficient on hydration, and the effect of the mineral composition of cements was notable. However, for cement pastes with a water cement ratio of 0.55, no significant effects of self-desiccation were observed, probably because considerable excess water was present.  相似文献   

15.
The microstructures of 0.40 w/s-ratio pastes of tricalcium silicate (C3S), alite and Portland cement have been studied at the hydration times 24 h and 1 month. A field-emission SEM (FE-SEM) was used to obtain high-resolution backscattered electron images. Comparison revealed no microstructural differences between C3S and alite, but there were considerable differences in microstructure between C3S and Portland cement pastes. The microstructure of the C3S paste was simpler than that of the Portland cement, and could be described by a few characteristic features. Distribution of the reaction products differed substantially in the two systems. While hollow shells (Hadley grains) were a prominent feature of the Portland cement paste, their occurrence was more limited in the C3S and alite pastes. Hollow shells were restricted to grains smaller than about 5 μm in the C3S and alite pastes, and gapped hollow shells were not a common feature.  相似文献   

16.
This study investigated the hydration properties of Type I, Type III and Type V cements, mixed with municipal solid waste incinerator fly ash, to produce slag-blended cement pastes. The setting time of slag-blended cement pastes that contained 40% slag showed significantly retardation the setting time compared to those with a 10% or even a 20% slag replacement. The compressive strength of slag-blended cement paste samples containing 10 and 20% of slag, varied from 95 to 110% that developed by the plain cement pastes at later stages. An increased blend ratio, due to the filling of pores by C-S-H formed during pozzolanic reaction tended to become more pronounced with time. This resulting densification and enhanced later strength was caused by the shifting of the gel pores. It was found that the degree of hydration was slow in early stages, but it increased with increasing curing time. The results indicated that it is feasible to use MSWI fly ash slag to replace up to 20% of the material with three types of ordinary Portland cement.  相似文献   

17.
This study investigated the pozzolonic reactions and engineering properties of municipal solid waste incinerator (MSWI) bottom ash slag blended cements (SBC) with various replacement ratios. The 90-day compressive strengths developed by SBC pastes with 10% and 20% cement replacement by slags generated from the bottom ash were similar to that developed by ordinary Portland cement pastes. Thermal analyses indicated that the hydrates in the SBC pastes were mainly portlandite (Ca(OH)2) and calcium silicate hydrate (C–S–H) gels, similar to those found in ordinary Portland cement paste. It is also indicated that the slag reacted with Ca(OH)2 to form C–S–H. The average length (in terms of the number of Si molecules) of linear polysilicate anions in C–S–H gel, as determined by 29Si nuclear magnetic resonance, increased in all the SBC pastes with increasing curing age, which outperformed that of ordinary Portland cement at 90 days. It can thus be concluded from the study results, that municipal solid waste incinerator bottom ash can be processed by melting to obtain reactive pozzolanic slag, which may be used in SBC to partially replace the cement.  相似文献   

18.
Natural and artificial pozzolanas have been used to obtain hydraulic binders for over a thousand years. Hardening of pozzolanic cement pastes can result from the reaction between pozzolana and the lime that is added to the mix as hydrated lime or is produced following hydration of portland cement silicates. The pozzolanic reaction does not alter cement clinker hydration; it complements and integrates the hydration process because it results in a lower portlandite content and an increase in calcium silicate hydrates.

Besides reviewing the most recent investigations on pozzolana-containing cements, this paper shows that the behaviour of different types of pozzolana can be quite similar when they are blended and become hydrated along with portland cement clinker. Portland cement properties may undergo several qualitative modifications the extent of which substantially depends on the pozzolana/clinker ratio. So, a maximum is reached in pozzolanic cements.

As in the case of pozzolanic cements, for which the current pozzolana content is about one third by weight of cement, the most outstanding variations induced in the behaviour of portland cement can be summarised as follows. Heat of hydration decreases whilst the rate of clinker hydration increases, paste porosity increases and permeability decreases, both portlandite content and Ca/Si ratio in C-S-H decrease and the C-S-H content increases.

Chemical and physical properties of pozzolanic cements eventually affect engineering ones. Early strength of both pastes and concretes decreases while ultimate strength is often found to exceed that of the reference portland cement.

If cements contain small amounts of very active pozzolana (silica fume, for example), both early and ultimate strengths may be higher than those of the substituted cement.

Creep is found to increase definitely with increasing pozzolana content whereas shrinkage remains practically unaffected.

Chemical and microstructural variations in the paste also influence resistance of concretes to environmental attacks.

The low basicity and permeability resulting from the presence of pozzolana increase the concrete's resistance to lime leaching, sulphate and sea water attacks, and chloride penetration. Carbonation depth is practically unaffected. Pozzolana containing cements can help avoid expansion induced by alkali-silica reaction. Concrete resistance to freezing is not affected by the use of pozzolanic cement since it basically depends on the entrained air content.

The results of a variety of studies introducing a comparison between pozzolana-containing cements and corresponding portland cements can be summarised as follows: cements with appreciable pozzolana contents perform better in the long term rather than at an early age.

In most cases, however, the differences between the two types of cements are not so marked and as a consequence both cements are interchangeable especially for the most common building types.  相似文献   


19.
This paper presents an experimental investigation on the effect of fly ash fineness on compressive strength, porosity, and pore size distribution of hardened cement pastes. Class F fly ash with two fineness, an original fly ash and a classified fly ash, with median particle size of 19.1 and 6.4 μm respectively were used to partially replace portland cement at 0%, 20%, and 40% by weight. The water to binder ratio (w/b) of 0.35 was used for all the blended cement paste mixes.Test results indicated that the blended cement paste with classified fly ash produced paste with higher compressive strength than that with original fly ash. The porosity and pore size of blended cement paste was significantly affected by the replacement of fly ash and its fineness. The replacement of portland cement by original fly ash increased the porosity but decreased the average pore size of the paste. The measured gel porosity (5.7–10 nm) increased with an increase in the fly ash content. The incorporation of classified fly ash decreased the porosity and average pore size of the paste as compared to that with ordinary fly ash. The total porosity and capillary pores decreased while the gel pore increased as a result of the addition of finer fly ash at all replacement levels.  相似文献   

20.
The effect of polycarboxylate (PC) superplasticizers with different structure on the rheological properties and hydration process of slag-blended cement pastes with a slag content between 0 and 75% has been studied. Fluidizing properties of PCs admixtures are significantly higher in slag-blended cement with respect to non-blended Portland cement. Also, it has been observed that the rise of the fluidity induced by the PCs on the cement pastes increases with the slag content. This effect is mainly attributed to a decrease in the amount of C3A available to adsorb and consume admixture to form an organo-mineral phase. Consequently, the PC admixtures are absorbed onto the silicate phases of the clinker and onto the slag particles, inducing a repulsion and the concomitant reduction in yield stress despite a reduction in the zeta potential. The rheological results allow us to conclude that the highest increase of the fluidity is caused by the admixtures with highest molecular weight due to the higher steric repulsion induced. As a consequence of the adsorption of the PCs, a delay of the hydration process of the pastes has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号