首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
废弃混凝土经简单破碎、一次颗粒整形和二次颗粒整形后分别制得Ⅱ类再生粗骨料、准类再生粗骨Ⅰ料和Ⅰ类再生粗骨料,将三类再生粗骨料在浓度6%的有机硅烷防水剂中进行24h化学浸渍处理,得到三类物理化学强化再生粗骨料。分别研究不同品质物理化学强化再生粗骨料和不同取代率(取代率:0%、25%、50%、75%、100%)取代天然骨料对再生混凝土的抗氯离子渗透性能的影响。结果显示:再生粗骨料混凝土抗氯离子性能为:化学强化二次颗粒整形再生粗骨料混凝土化学强化一次颗粒整形再生粗骨料混凝土化学强化简单破碎再生粗骨料混凝土,且均优于普通混凝土;三类化学强化再生粗骨料混凝土的氯离子迁移系数均随着取代率的增大而减小。  相似文献   

2.
采用干湿比为3∶1和质量分数为5wt%的NaCl溶液,开展了持压荷载与干湿循环共同作用下不同再生粗骨料取代率(r=0%、30%、50%、100%)混凝土的氯离子传输试验,分析了持压应力水平(λc=0.1、0.3、0.5)对氯盐侵蚀性能的影响。基于非饱和混凝土的氯离子对流-扩散模型,提出了考虑应力水平和再生骨料取代率影响的水分和氯离子扩散系数模型,并验证了该模型的有效性。结果表明:相同再生粗骨料取代率的混凝土内自由氯离子含量、氯离子扩散系数和表面氯离子浓度均随应力水平的增加呈先减小后增大的趋势,同一应力水平下与再生粗骨料取代率呈正相关,再生粗骨料取代率为100%的试件承受0.1fc、0.3fc、0.5fc(fc为再生混凝土(RAC)立方体抗压强度值)应力作用的氯离子扩散系数分别是无应力状态的0.97、0.88和1.48倍;所建立的持压荷载与干湿循环作用下RAC氯离子传输模型,为再生混凝土耐久性分析提供理论依据。  相似文献   

3.
采用快冻法对9种再生混凝土进行了冻融循环试验。分析了经受100次冻融循环后不同取代率下再生粗骨料和再生细骨料对混凝土立方体抗压强度的影响;研究了每25次冻融循环后再生混凝土的棱柱体质量损失率和相对动弹性模量的变化;比较了100次冻融循环作用对不同取代率下再生混凝土抗压承载力的影响。结果表明,再生混凝土抗冻融性能有所下降,且降低幅度随再生骨料取代率的增加而加剧;100次冻融循环后,再生粗骨料取代率为50%,细骨料为天然骨料的再生混凝土,其质量损失率、相对动弹性模量衰减幅度和抗压承载力损失率均与普通混凝土接近,建议再生粗骨料掺量不高于50%的再生混凝土可在寒冷地区推广应用。  相似文献   

4.
邓祥辉  高晓悦  王睿  赵崇基 《材料导报》2021,35(16):16028-16034
再生混凝土抗冻耐久性与混凝土结构内部孔隙分布变化密切相关.为研究再生混凝土结构内部孔隙分布与抗冻耐久性的定量关系,选取再生粗骨料取代率为0% 、25% 、50% 、75% 、100%的普通再生混凝土和引气再生混凝土作为研究对象,进行冻融循环试验和核磁共振试验,测试混凝土试件质量、动弹性模量、抗折强度以及结构内部孔隙分布情况.结果表明:在冻融循环试验中,加入引气剂可有效改善试件内部的中孔(0. 01~0. 05 μm)和大孔(0. 05~1 μm)的占比,从而提高其抗冻性能;在10种不同配比中,引气天然骨料混凝土的抗冻性能最佳,其次是再生粗骨料替代率为50%的引气再生混凝土,其内部孔隙结构相比再生粗骨料替代率为25% 、75%和100%的引气再生混凝土更加稳定;再生混凝土冻融循环后的抗折强度变化与结构内部孔隙的分布和占比密切相关.  相似文献   

5.
陶亚平  赖天文 《功能材料》2023,(3):3143-3148
以C30混凝土为再生粗骨料,采用铁尾矿砂取代天然河砂,制备出不同铁尾矿砂取代率(0,25%,50%,75%和100%(质量分数))的再生混凝土。研究了不同铁尾矿砂取代率对再生混凝土力学性能、微观形貌、耐久性能的影响。结果表明,随着铁尾矿砂取代率的增加,再生混凝土的抗压强度、抗折强度、劈裂抗拉强度均表现出先增高后降低的趋势,50%(质量分数)铁尾矿砂取代率的再生混凝土力学性能最佳;掺入适量的铁尾矿砂能够填充再生混凝土骨料之间的裂缝和孔隙,提高再生混凝土的结构致密性,改善混凝土的微观结构;50%(质量分数)铁尾矿砂取代率的再生混凝土在碳化处理28 d后的碳化深度最低为4.1 mm,抗碳化性能最优;冻融循环80次后,50%(质量分数)铁尾矿砂取代率的再生混凝土的相对动弹性模量最大为94.53%,质量损失率最低为-0.11%,抗冻性能最佳。综合可知,当铁尾矿砂的取代率为50%(质量分数)时,可以有效改善再生混凝土的力学性能、微观形貌和耐久性能。  相似文献   

6.
以芽孢杆菌浓度和再生粗骨料取代率为变化参数,深入分析了再生骨料混凝土试件开裂后表观变化、破坏形态和芽孢杆菌修复等规律。结果表明:再生骨料取代率较低时,混凝土试件的开裂变化、破坏形态与普通混凝土试件相似,且不随芽孢杆菌浓度的变化而出现较大的修复效能波动;随着再生骨料取代率的升高,再生骨料混凝土试件裂缝修复的增长速度大于普通混凝土试件,取代率低于30%时,再生混凝土试件开裂后的修复效果并不明显,而普通混凝土试件强度、抗离子侵蚀能力的退化大于再生混凝土试件,取代率超过30%后,普通混凝土试件抗离子侵蚀能力的退化较再生混凝土试件显著;随着芽孢杆菌浓度的提高,再生混凝土试件修复的增幅明显大于普通混凝土试件,而浓度超过30%时,试件内芽孢杆菌修复的能力出现退化且修复效果仍明显优于普通混凝土试件。  相似文献   

7.
杨海涛  田石柱 《功能材料》2013,(17):2524-2527
采用再生粗骨料配制强度在50MPa或更大的高强再生骨料混凝土,并对其变形能力和耐久性进行测定,为高强再生骨料混凝土在工程上的应用提供理论和实验基础。通过一系列的抗压实验确定再生粗骨料的强度极限,并通过对水灰比的调整,使配制的高强再生骨料混凝土在强度上达到设计值,并以再生粗骨料取代率为0、30%、50%、80%和100%的高强再生骨料混凝土为研究对象进行实验。当再生粗骨料取代率为30%时,对再生混凝土的强度影响不大;之后混凝土强度随再生骨料的增加而降低。高强再生骨料混凝土与天然混凝土在耐久性上具有相似的性能,可以将高强再生混凝土应用于工程中。  相似文献   

8.
《中国粉体技术》2015,(4):85-88
对比从不同强度等级原生混凝土得到的再生粗骨料的物理力学性质,并以工程实际配合比为基础,研究再生骨料取代率对新拌混凝土的工作性、力学强度和抗渗性的影响。结果表明:再生粗骨料的物理力学性能差于天然粗骨料的,原生混凝土的强度越高,其再生骨料的性能越好;再生骨料取代率越大,新拌混凝土的坍落度越小,流动性越差,但是保水性和粘聚性越好;再生骨料混凝土的力学强度和抗渗性均优于原生混凝土的。  相似文献   

9.
混凝土结构表面硅烷浸渍处理技术研究进展   总被引:1,自引:0,他引:1  
混凝土结构硅烷浸渍表面处理技术已经被纳入规范,并广泛应用于以海洋环境为代表的严重腐蚀环境下的混凝土结构。介绍了硅烷浸渍表面处理技术的历史沿革以及硅烷的分类,探讨了硅烷浸渍技术的作用机理,总结了国内外硅烷浸渍处理用硅烷材料的技术要求,从基本功能、基于作用环境功能以及辅助功能3方面提出了硅烷浸渍处理的技术要求,阐述了硅烷浸渍处理技术对混凝土吸水性能、抗氯离子渗透性能、抗冻性能、抗磨性能与抗酸雨性能的影响,提出了混凝土结构表面硅烷浸渍处理技术存在的问题,指出了硅烷浸渍处理技术适用的作用环境。  相似文献   

10.
为了探究再生粗骨料取代率对钢管与再生混凝土界面粘结强度及破坏机理的影响, 设计15个圆钢管再生混凝土和9个方钢管再生混凝土短柱试件, 以混凝土强度等级和长径比为变化参数分组进行取代率的影响分析. 通过推出试验, 获取荷载-滑移曲线的特征点参数, 回归得到极限粘结强度的计算公式. 从界面耗能、粘结抗剪刚度、损伤等角度分析了取代率对其内在失效机理的影响. 研究结果表明:极限粘结强度拟合公式计算值与试验实测值吻合较好;再生粗骨料取代率变化对钢管再生混凝土接触界面粘结失效过程的耗能能力影响不大;而界面弹性粘结剪切刚度却随着取代率的增加而降低;剪切刚度退化速度则相反, 随着取代率的增加而加快;再生粗骨料粘附的水泥基和内部裂纹会加快钢管再生混凝土界面的粘结损伤过程.  相似文献   

11.
Influence of field recycled coarse aggregate on properties of concrete   总被引:1,自引:0,他引:1  
This paper investigates the influence of different amounts of recycled coarse aggregates obtained from a demolished RCC culvert 15 years old on the properties of recycled aggregate concrete (RAC). A new term called “coarse aggregate replacement ratio (CRR)” is introduced and is defined as the ratio of weight of recycled coarse aggregate to the total weight of coarse aggregate in a concrete mix. To analyze the behaviour of concrete in both the fresh and hardened state, a coarse aggregate replacement ratio of 0, 0.25, 0.50 and 1.0 are adopted in the concrete mixes. The properties namely compressive and indirect tensile strengths, modulus of elasticity, water absorption, volume of voids, density of hardened concrete and depth of chloride penetration are studied. From the experimental results it is observed that the concrete cured in air after 7 days of wet curing shows better strength than concrete cured completely under water for 28 days for all coarse aggregate replacement ratios. The volume of voids and water absorption of recycled aggregate concrete are 2.61 and 1.82% higher than those of normal concrete due to the high absorption capacity of old mortar adhered to recycled aggregates. The relationships among compressive strength, tensile strengths and modulus of elasticity are developed and verified with the models reported in the literature for both normal and recycled aggregate concrete. In addition, the non-destructive testing parameters such as rebound number and UPV (Ultrasonic pulse velocity) are reported. The study demonstrates the potential use of field recycled coarse aggregates (RCA) in concrete.  相似文献   

12.
This research aims to study the effect of ground fly ash (GFA) and ground bagasse ash (GBA) on the durability of recycled aggregate concrete. Recycled aggregate concrete was produced with recycled aggregate to fully replace crushed limestone in the mix proportion of conventional concrete (CON) and GFA and GBA were used to partially replace Portland cement type I at the rate of 20%, 35%, and 50% by weight of binder. Compressive strength, water permeability, chloride penetration depth, and expansion by sulfate attack on concretes were investigated.The results reveal that the use of GFA and GBA to partially replace cement in recycled aggregate concrete was highly effective in improving the durability of recycled aggregate concrete. The suitable replacement of GFA or GBA in recycled aggregate concrete to obtain the suitable compressive strength, low water permeability, high chloride penetration resistance, and high sulfate resistance is 20% by weight of binder.  相似文献   

13.
This paper reports an experimental study to improve the properties of recycled concrete aggregates (RCA) by their impregnation with polyvinyl alcohol (PVA). The effects of PVA on the development of strength and durability properties of the recycled aggregate concrete were evaluated. The experimental investigation was conducted in two parts. Firstly, the optimal concentration of PVA solution required to improve the recycled aggregates was determined. The RCA was soaked in 6%, 8%, 10%, 12% PVA solutions, and impregnation was conducted under a controlled laboratory environment. Density, crushing value (10% fines value), and water absorption of the PVA impregnated RCA (PI-RCA) were determined. Secondly, the slump, slump loss, compressive and tensile splitting strength, dimensional change (shrinkage) and chloride penetrability of the concretes prepared with the RCA that had been impregnated with the optimal (10%) PVA concentration were determined. It was found that the 10% fines value of the PI-RCA was higher, and the water absorption of the PI-RCA were lower when compared to the untreated RCA. The results show that there was not only an improvement in the mechanical properties of the concrete made with PI-RCA, but also the shrinkage of PI-RCA decreased while the resistance to chloride-ion penetration of the concrete produced increased.  相似文献   

14.
In this paper the bond behavior of recycled aggregate concrete was characterized by replacing different percentages of natural coarse aggregate with recycled coarse aggregate (20, 50 and 100 %). The results made it possible to establish the differences between the conventional concrete bond strength and the recycled concrete bond strength depending on the replacement percentage. It was thus found that bond stress decreases with the increase of the percentage of recycled coarse aggregate used. In order to define the influence of recycled aggregate content on bond behavior, normalized bond strength was calculated taking into account the reduced compressive strength of the recycled concretes. Finally, using the experimental results, a modified expression for maximum bond stress (bond strength) prediction was developed, taking into account replacement percentage and compressive strength. The obtained results show that the equation proposed provides an experimental value to theoretical prediction ratio similar to that of conventional concrete.  相似文献   

15.
Fine recycled aggregates are seen as the last choice in recycling for concrete production. Many references quote their detrimental influence on the most important characteristics of concrete: compressive and tensile strength; modulus of elasticity; water absorption; shrinkage; carbonation and chloride penetration. These two last characteristics are fundamental in terms of the long-term durability of reinforced or prestressed concrete. In the experimental research carried out at IST, part of which has already been published, different concrete mixes (with increasing rates of substitution of fine natural aggregates – sand – with fine recycled aggregates from crushed concrete) were prepared and tested. The results were then compared with those for a reference concrete with exactly the same composition and grading curve, but with no recycled aggregates. This paper presents the main results of this research for water absorption by immersion and capillarity, chloride penetration (by means of the chloride migration coefficient), and carbonation resistance, drawing some conclusions on the feasibility of using this type of aggregate in structural concrete, while taking into account any ensuing obvious positive environmental impact.  相似文献   

16.
The effects of the use of Class F fly ash as a cement addition on the hardened properties of recycled aggregate concrete were determined. In this study, four series of concrete mixtures were prepared with water-to-cement (w/c) ratios of 0.55, 0.50, 0.45 and 0.40. The recycled aggregate was used as 0%, 20%, 50% and 100% replacements of coarse natural aggregate. Furthermore, fly ash was employed as 0% and 25% addition of cement. Although the use of recycled aggregate had a negative effect on the mechanical properties of concrete, it was found that the addition of fly ash was able to mitigate this detrimental effect. Also, the addition of fly ash reduced the drying shrinkage and enhanced the resistance to chloride ion penetration of concrete prepared with recycled aggregate. Moreover, it was found that the drying shrinkage and chloride ion penetration decreased as the compressive strength increased. Compared with the results of our previous study, the present study has quantified the advantages of using fly ash as an additional cementitious material in recycled aggregate concrete over the use of fly use as a replacement of cement.  相似文献   

17.
再生粗骨料的随机特性及分级方法研究   总被引:1,自引:0,他引:1  
吴瑾  朱磊  景宪航 《工程力学》2015,32(2):97-104,130
通过96个不同来源废旧混凝土再生粗骨料样本的试验,研究了再生粗骨料吸水率、堆积密度、饱和面干表观密度和压碎指标的概率分布特征。试验结果表明,四个指标均服从正态分布。根据相对方差和极差分析结果,确定了吸水率和压碎指标作为再生粗骨料品质分级的控制指标。然后对不同来源再生粗骨料混凝土进行抗压强度试验,得到了再生粗骨料吸水率和压碎指标的分级范围,从而提出了再生粗骨料品质的分级方法。最后利用其他研究者的试验数据,验证了该方法对再生粗骨料分级的合理性。  相似文献   

18.
This paper presents an experimental study on the properties and on the durability of concrete containing ceramic wastes. Several concrete mixes possessing a target mean compressive strength of 30 MPa were prepared with 20% cement replacement by ceramic powder (W/B = 0.6). A concrete mix with ceramic sand and granite aggregates were also prepared as well as a concrete mix with natural sand and coarse ceramic aggregates (W/B = 0.5). The mechanical and durability performance of ceramic waste based concrete are assessed by means of mechanical tests, water performance, permeability, chloride diffusion and also accelerated aging tests. Results show that concrete with partial cement replacement by ceramic powder although it has minor strength loss possess increase durability performance. Results also shows that concrete mixtures with ceramic aggregates perform better than the control concrete mixtures concerning compressive strength, capillarity water absorption, oxygen permeability and chloride diffusion. The replacement of cement and aggregates in concrete by ceramic wastes will have major environmental benefits.  相似文献   

19.
The recycling of construction and demolition (C&;D) waste as a source of aggregates for the production of new concrete has attracted increasing interests from the construction industry. While the environmental benefits of using recycled aggregates are well accepted, some unsolved problems prevent this type of material from wide application in structural concrete. One of the major problems with the use of recycled aggregates in structural concrete is their high water absorption capacity which leads to difficulties in controlling the properties of fresh concrete and consequently influences the strength and durability of hardened concrete. This paper presents an experimental study on the properties of fresh concrete prepared with recycled aggregates. Concrete mixes with a target compressive strength of 35 MPa are prepared with the use of recycled aggregates at the levels from 0 to 100% of the total coarse aggregate. The influence of recycled aggregate on the slump and bleeding are investigated. The effect of delaying the starting time of bleeding tests and the effect of using fly ash on the bleeding of concrete are explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号