共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
针对非线性、非平稳且包含强烈的噪声的轴承故障振动信号难以有效提取故障特征信息进行故障识别的问题,提出基于双树复小波变换和双谱的故障诊断方法。首先利用双树复小波变换将故障轴承振动信号分解为若干个不同频带的分量,选择出包含故障特征的分量;然后对该分量进行希尔伯特包络解调;最后对包络信号求其双谱图,从而有效地提取出故障信号的特征频率,准确地进行故障识别。滚动轴承故障实验和工程应用表明,该方法能有效地提取故障轴承的故障特征频率,并且几乎可以完全抑制噪声,验证了方法的可行性和有效性。 相似文献
3.
胥永刚赵国亮马朝永杨红玉 《振动工程学报》2015,(4):650-656
齿轮故障振动信号往往表现为非线性非平稳特性,并且早期故障振动信号往往包含较强的背景噪声,不利于故障特征的提取。针对该问题,提出了基于双树复小波变换和局部投影算法的齿轮故障诊断方法。首先,对故障信号进行双树复小波变换,得到不同尺度下的小波系数和最后一层的尺度系数,并计算各层小波系数的模与相角。然后,选择模周期性较强的小波系数或尺度系数进行局部投影算法处理,得到周期性增强的系数的模,并选择合适的阈值进行软阈值处理。最后,利用处理后的系数进行双树复小波重构,从而提取出齿轮故障特征信号,进行希尔伯特包络解调分析便能准确地得到故障特征频率。仿真信号和工程应用表明,该方法能够有效地提取齿轮故障特征信息,提供了一种齿轮故障特征提取的新方法。 相似文献
4.
针对传统包络谱和峭度图分析技术的缺陷,提出了一种基于双树复小波包峭度图的轴承故障诊断方法。该方法综合利用了双树复小波包变换和峭度图分析技术,克服了原峭度图方法只采用FIR和短时傅立叶变换滤波器的缺点,提高了从强噪声环境中提取瞬态冲击特征的能力。首先利用双树复小波包变换,将振动信号分解成不同频带的分量,然后计算各小波分量的谱峭度,再利用谱峭度的滤波器作用,计算最大峭度值对应分量信号的包络谱,根据包络谱就可识别齿轮箱轴承的故障部位和类型。齿轮箱轴承故障振动实验信号的研究结果表明:该方法不仅提高了信噪比和频带选择的正确性,而且能有效地识别轴承的故障。 相似文献
5.
基于双树复小波包的发动机振动信号特征提取研究 总被引:5,自引:3,他引:5
针对柴油机缸盖振动信号的特征提取问题,提出了一种基于双树复小波包变换和自适应块阈值降噪的标准化相对能量提取方法,双树复小波包利用并行双树实小波变换分解系数达到信息互补,从而获得近似平移不变性和减少了信息的丢失.自适应分块阈值能够随所分析的信号自适应估计最优阈值,达到更好的降噪效果,同时引入消除频率混叠的算法,抑制了双树复小波包分解过程中虚假频率的产生.仿真信号和试验分析该方法能够更有效地消除噪声影响,所提取的相对能量特征具有更好的可区分度. 相似文献
6.
7.
针对故障齿轮振动信号的非平稳特征和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频谱中难以准确地得到故障频率。然后对包含故障特征的分量构建Hankel矩阵并进行奇异值分解,求奇异值差分谱曲线,确定奇异值个数进行SVD重构降噪,由此实现对故障特征信息的提取。最后再求希尔伯特包络谱,便能准确地得到故障频率。实验结果和工程应用表明,该方法可以有效地提取齿轮的故障特征信息,验证了方法的可行性和有效性。 相似文献
8.
基于小波域隐马尔可夫模型故障诊断方法 总被引:5,自引:4,他引:1
针对基于小波能量谱和能量谱熵的故障诊断方法要求小波分解系数基本符合高斯分布这一不足,提出一种基于多尺度小波域隐马尔可夫模型(WHMM)参数特征的故障诊断方法.该方法分析了信号多尺度小波分解系数的统计特征,利用隐马尔可夫模型描述小波变换域系数在尺度间,尺度内的统计相关性.采用最大似然估计方法确定的模型参数作为信号特征实现故障诊断.试验结果证实了设计思想的正确性和算法的高效检测性能.最后从小波基、窗口宽度和分类器三个层面对建议方法诊断性能的影响进行分析,结果表明本文方法具有很强的稳定性和鲁棒性. 相似文献
9.
复数小波统计模型在图像降噪中的应用 总被引:4,自引:0,他引:4
复数小波变换具有平移不变性和多方向选择性,适用于图像去噪。对自然图像复数小波系数统计分布进行建模,提出了一种新的概率密度函数。在此先验分布的基础上,通过运用最大后验概率估计方法从含噪系数中恢复原始系数,来达到滤出噪声的目的。数值实验表明本方法在去除噪声的同时保留了图像的细节信息,取得了很好的降噪性能,其峰值信噪比(PSNR)在高噪声水平下(n=30),较其他常见方法至少高1.9dB左右。 相似文献
10.
11.
基于最优Morlet小波和隐马尔可夫模型的轴承故障诊断 总被引:3,自引:3,他引:0
摘要:提出一种从信号时频域提取故障特征的新方法,先将振动信号作Morlet小波变换,再将小波系数顺序划分成多个子列,各子列协方差矩阵的特征值为所需的特征参数。为了更有效地提取信号的振动特性及周期性成分,使用了最小香农熵准则和奇异值分解技术选择Morlet小波参数,并用比较实验证明了参数优化的有效性。状态辨识使用了连续型隐马尔可夫模型,在三种故障程度下分别实现了轴承正常状态,滚动体故障,内圈和外圈故障的正确辨识,平均精度都大于93%。 相似文献
12.
本文参照直线上隐Markov模型的概念,给出有限树指标隐Markov链的定义.在该定义中,树指标隐Markov链由两个树指标随机过程组成,其中第一个树指标随机过程是树指标Markov链,是不能被直接观测到的隐藏链;第二个树指标随机过程是可被观测的且关于第一个树指标随机过程条件独立,对于树上的任意一个顶点,第二个随机过程此处的取值只信赖于隐藏链中此处的取值.最后,我们给出了树指标隐Markov链的三个等价定义. 相似文献
13.
14.
小波包变换和隐马尔可夫模型在轴承性能退化评估中的应用 总被引:4,自引:4,他引:0
轴承是旋转机械中的关键部件,有效地对其进行性能退化评估对指导设备维护、防止设备意外失效有非常重要的意义。本文提出了一种基于小波包变换和隐马尔可夫模型(HMM)的轴承性能退化评估方法。该方法使用小波包变换对轴承振动信号进行分析,并提取节点能量及其总能量作为特征,仅使用正常状态下的数据训练HMM,建立性能退化评估模型,然后使用该模型对轴承的退化程度进行定量评估。最后,通过对轴承加速疲劳寿命试验的研究,验证了所提出的方法的可行性和有效性。 相似文献
15.
为更好地保留原有用信号信息,有效恢复强噪声背景下微弱故障信号,提出了一种基于对偶树复小波和改进型阈值函数的降噪方法,将其应用于机械故障诊断,取得了较好效果。运用对偶树复小波变换滤波器设计方法和改进型阈值函数,以实施降噪的具体步骤。该法充分利用了对偶树复小波变换的平移不变的优良特性,同时,改进型阈值函数与传统软、硬阈值降噪算法相比,克服了软阈值信号失真和硬阈值信号不连续、振荡等缺点。实验表明:此法有效去除了噪声,是一种较好的提取微弱故障信号的方法。 相似文献
16.
17.
很多小波去噪方法认为小波系数是相互独立的,然而大量实验表明实际图像的小波系数之间是有较强的依赖性。在本文中,我们将利用复小波变换的优势以及小波系数之间的依赖性,提出一种新的图像去噪方法。该方法先确定滤波器系数,再对复小波变换系数建模,并根据MAP准则给出系数的收缩方法进行去噪处理,最后作复小波逆变换。同时在变换的系数抽取之前估计系数的方差,可以使方差估计更准确。 相似文献
18.