首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
用直流电弧等离子体法制备金属钼纳米粉体再使其与赤磷发生固相反应,用两步法制备出磷化钼纳米粒子。使用X射线衍射(XRD)和透射电镜(TEM)等手段表征磷化钼纳米粒子的结构并进行了电化学性能测试。结果表明,MoP纳米粒子呈球状,粒径为20~50 nm;在电流密度为100 mA/g的条件下MoP纳米粒子负极材料的首次放电比容量达到746 mAh/g,50次循环后放电比容量为241.9 mAh/g;电流密度为2000 mA/g时放电比容量为99.90 mAh/g,电流密度恢复到100 mA/g其放电比容量仍然保持247.60 mAh/g。用作锂离子电池的负极材料,MoP纳米粒子具有优异的稳定性和可逆性。  相似文献   

2.
将钛源、锂源和碳源三种化合物一起球磨湿混成均匀浆料,再依次经过喷雾干燥和高温煅烧制得晶粒表面包覆纳米碳层的多孔球形钛酸锂(Li4Ti5O12)材料.通过XRD、SEM、TEM、BET和电化学性能测试等分析手段表明,合成出的Li4Ti5O12/C材料为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),具有较大的比表面积,达到39.5 m2/g;在0.1C、1.0C和5.0C倍率下的首次放电比容量分别达到172.2、168.2和153.6 mAh/g,并表现出优良的循环性能.晶粒表面包覆碳的多孔Li4Ti5O12材料具有明显的高倍率性能和循环稳定性优势.  相似文献   

3.
采用环氧树脂为碳源制备出碳芯结构LiFePO4/C复合材料.利用X射线衍射、扫描电镜、透射电镜和X光电子能谱等分别对复合材料的晶体结构、表面形貌及表面成分进行表征,采用恒电流充放电和电化学阻抗方法研究试样的电化学性能.实验结果表明:碳芯结构复合材料是由无定形碳线和纳米LiFePO4颗粒组成.碳芯结构LiFePO4/C复合材料在15mA/g的电流密度下,首次放电容量达到166mAh/g,当电流密度增加到750mA/g,放电容量高达131mAh/g,经过50次循环后,容量保持率高达99.2%.  相似文献   

4.
通过加热回流-喷雾干燥-高温煅烧三步法制备了包覆碳的纯相Li2MnSiO4锂离子电池正极材料,研究了回流时间对材料性能的影响.通过XRD、SEM、TEM和电化学测试对Li2MnSiO4材料的结构、形貌及电化学性能进行了测试和表征.结果表明,当电流密度为30mA/g时,所制备的材料首次放电容量达189.1mAh/g;当电流密度为300mA/g时,首次放电容量达132.9mAh/g,经过40次循环,保持了首次放电容量的55.6%.  相似文献   

5.
《功能材料》2021,52(7)
通过前驱体MIL-88热解制备出具有碳壳包覆的纺锤状Fe_2O_3纳米粒子(Fe_2O_3@C)。当用来作为锂离子电池的负极材料时,这种具有碳包覆的Fe_2O_3纳米粒子不仅可以促进电极与电解液的接触、调节循环测试所引起的体积变化,而且可以提高电极的导电性。得益于这种独特的碳包覆的框架结构,该复合材料展示出1350 mAh/g的高首次放电比容量,以及优异的循环性能(循环100圈后得到800 mAh/g的可逆比容量)和倍率性能。  相似文献   

6.
带直流电弧等离子体气相蒸发法制备球状Al纳米粒子,并对其进行了XRD、TEM以及电极的脱/嵌锂离子循环性能表征。结果表明,制备出的Al粒子大小约为100 nm,表面包覆一层厚度不到1nm的非晶氧化物。使用Al纳米粒子制做的负极极片组装电池,研究了电流密度对其电化学特性的影响。结果表明,电池的首次充放电曲线和前10次循环性能曲线表明,电流密度最小的Al电极首次放电容量最大,为951.9 mAh/g.首次容量损失也最大,其循环稳定性能也相应变差:而电流密度最大的Al电极首次放电容量为879.7mAh/g,其循环稳定性能最佳。首次放电结束后,在电极材料中出现了两种化合物AlLi和Al2Li3,与测试出的放电容量相符。  相似文献   

7.
以纳米黑磷和氧化石墨烯为原料,通过高温热处理的方法合成了碳包覆的磷/石墨烯复合材料,通过XRD、Raman、FT-IR、XPS及SEM对该复合材料进行表征。电化学性能测试表明,在100mA/g的电流密度下,制备的复合材料首次充电比容量为530mAh/g,循环50次后比容量仍然保持在492mAh/g,容量保持率为92.8%,表现出优异的电化学性能。  相似文献   

8.
以经活化处理的石墨烯(AG)为主体材料, 通过化学还原法制备了石墨烯负载硫的复合正极材料AG/S。SEM、EDX和TEM测试结果表明经活化处理后形成手风琴结构的AG, 有利于电解液的浸润; 活性物质硫均匀地负载在AG表面, 同时沉积在AG的层间。电化学测试表明: 在400 mA/g电流密度下, AG/S复合正极材料首次放电比容量为1452.9 mAh/g, 经过200次循环之后, 放电比容量仍保持在909.7 mAh/g; 在1000 mA/g电流密度下, AG/S复合材料首次放电比容量为1309.9 mAh/g, 经过200次循环之后, 放电比容量仍保持在717.1 mAh/g。AG/S复合正极材料的倍率性能、库仑效率和循环性能优异, 这得益于小尺寸的硫在材料中均匀分布, 活化石墨烯优良的导电性以及其结构对硫的固化作用。  相似文献   

9.
先用直流(DC)电弧法制备TiH1.924纳米粉作为前驱体,再用固-气相反应制备了片状结构的TiS3纳米粉体。使用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)、拉曼光谱分析和性能测试等手段对其表征,研究了TiS3纳米片的结构和将其用作负极的锂离子电池的性能。结果表明:TiS3纳米片具有特殊的片状结构,其厚度约为35 nm。将TiS3纳米片用作负极的锂离子电池具有良好的电化学性能,在500 mA/g电流密度下循环300圈后其容量仍保持在430 mAh/g。以5 A/g的大电流密度放电其比容量为240 mAh/g,电流密度恢复到100 mA/g其放电比容量稳定在500 mAh/g。TiS3良好的倍率性能,源于其特殊的纳米片状结构。这种单层片状结构,能较好地适应电极材料在大电流密度多次放电/充电过程中产生的应变引起的体积变化,使其免于粉碎。  相似文献   

10.
采用葡萄糖、环氧树脂、酚醛树脂为碳源制备了LiFePO4/C复合材料。利用X射线衍射、扫描电镜等方法对复合材料进行研究。结果表明,葡萄糖获得了碳包覆复合材料,而环氧树脂、酚醛树脂则得到了碳芯结构复合材料。碳芯结构复合材料的电化学性能优于碳包覆复合材料,电流密度为15mA/g时,试样C、D的放电容量分别为165、167mAh/g;电流密度为600mA/g时,试样C、D的放电容量分别为139.4、145.5mAh/g,经过50循环后容量保持率分别高达99.2%、99.5%。  相似文献   

11.
高云雷  赵东林  沈曾民 《功能材料》2012,43(11):1446-1449
以天然石墨为原料,采用改进的Hummers法合成含Mn的氧化石墨;400℃条件下氢气还原制备了锰氧化物/石墨烯复合材料。利用XRD、SEM和TEM对所制备的复合材料进行了表征。结果表明锰氧化物(MnOx)颗粒均匀地分布在石墨烯片层表面。将复合材料作为锂离子电池负极进行研究,在50mA/g电流密度下,首次库伦效率为70.4%,可逆容量达876mAh/g,并且具有良好的循环性能,在30次循环后仍保持在700mAh/g以上。  相似文献   

12.
采用醇热技术可控制备了中空核壳结构α-MoO3-SnO2二次锂离子电池复合负极材料。通过XRD、SEM、TEM、CV和恒流充放电等测试手段对材料结构、形貌和电化学性能进行了表征。结果表明: 构建的多元金属氧化物既具有电化学活性成分, 又含有骨架支撑部分, 独特的中空结构有效地缩短了电子和锂离子传输路径。电化学测试表明: 该材料在电流密度50 mA/g时循环100次后放电比容量仍高达865 mAh/g。在电流密度为1000 mA/g时循环100次后放电比容量仍达到545 mAh/g, 表现出优异的循环性能和倍率性能。该合成方法简单、成本低, 产量高, 可为制备其它中空核壳结构先进功能材料提供借鉴。  相似文献   

13.
Si是一种很有前途的Li离子电池负极材料。为解决其巨大体积形变导致的容量衰退快、循环寿命短等问题,采用简单的搅拌和热还原,利用聚乙二醇衍生的薄碳修饰Si纳米颗粒(C-PEG@Si NPs),并通过石墨烯的桥联来制备具有多级包覆结构的石墨烯桥联C-PEG包覆的Si纳米颗粒(graphene@C-PEG@Si NPs)复合材料。利用SEM、 TEM、 X射线衍射、恒流充放电测试等一系列表征测试方法对材料结构、物相和电化学性能进行分析。C-PEG与石墨烯涂层可有效地减小Li离子储存过程中Si对电解质的暴露面积并缓解其体积膨胀。研究结果表明,相比纯Si, graphene@C-PEG@Si NPs复合材料表现出优异的电化学性能,在210 mA/g的电流密度下,经过100次循环可逆比容量仍高达1 032 mA·h/g,电极在4 200 mA/g的大电流密度下循环100次,其比容量仍保持在430 mA·h/g以上。  相似文献   

14.
Among lithium alloy metals, silicon is an attractive candidate to replace commercial graphite anode because silicon possesses about ten times higher theoretical energy density than graphite. However, electrically nonconducting silicon undergoes a large volume changes during lithiation/delithiation reactions, which causes fast loss of storage capacity upon cycling due to electrode pulverization. To alleviate these problems, electrodes comprising Si nanoparticles (20 nm) and graphene platelets, denoted as SiGP-1 (Si = 35.5 wt%) and SiGP-2 (Si = 57.6 wt%), have been prepared with low cost materials and using easily scalable solution-dispersion methods. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) analyses indicated that Si nanoparticles were highly dispersed and encapsulated between graphene sheets that stacked into platelets in which portions of graphite phases were reconstituted. From the galvanostatic cycling test, SiGP-1 exhibited a reversible lithiation capacity of approximately 802 mAh/g with excellent capacity retention up to 30 cycles at 100 mA/g. Further cycling with a step-increase of current density (100-1,000 mA/g) up to 120 cycles revealed that it has an appreciable power capability as well, showing 520 mAh/g at 1,000 mA/g with capacity loss of 0.2-0.3% per cycle. The improved electrochemical performance is attributed to the robust electrical integrity provided by flexible graphene sheets that encapsulated dispersed Si nanopraticles and stacked into platelets with portions of reconstituted graphite phases in their structure.  相似文献   

15.
李文娟  张楚虹 《材料导报》2016,30(Z2):1-4, 14
以维生素C(VC)为还原剂,通过溶剂热还原法制备了纳米二氧化锡/三维大孔石墨烯复合负极材料(SnO_2/3DGr)。SEM和TEM测试表明,SnO_2/3DGr具有均匀分布的微米级孔隙,其中SnO_2晶粒尺寸为6~8nm,且均匀分布在石墨烯片层表面。电化学测试表明所制备的SnO_2/3DGr复合电极材料具有优异的电化学性能,该材料在电流密度为100mA/g时,循环100周之后仍然具有1678mAh/g的可逆比容量,在极高电流密度5A/g下,仍然保持405mAh/g的可逆比容量,表现出非常优异的循环稳定性和倍率性能。该材料独特的三维大孔结构以及SnO_2与石墨烯的协同作用,很好地抑制了SnO_2在循环过程中的体积效应,大大改善了SnO_2负极材料的电化学性能。  相似文献   

16.
李旭  孙晓刚  陈玮  王杰 《复合材料学报》2018,35(11):3219-3226
为提高硅基锂离子电池的电化学性能,制备了一种多微孔结构的集流体。以纸纤维为基体,多壁碳纳米管(MWCNTs)为导电剂,制得MWCNTs/纸纤维复合多孔导电纸代替铜箔作为负极集流体。MWCNTs负载中空Si微球复合材料作为负极活性材料。FESEM分析显示,中空Si-MWCNTs复合活性物质均匀分布在MWCNTs构建的三维导电网络的孔隙中,从而保证了材料的结构稳定性和化学稳定性。所制备的中空Si-MWCNTs/纸纤维复合锂离子电池具有良好的循环稳定性和较高的比容量,同时具有可逆性。在0.02 C的电流密度下,循环30次后其比容量稳定在1 300 mAh/g。在3 C的大电流密度下,比容量仍可稳定保持在330 mAh/g。恢复0.25 C充放电后,容量恢复为1 150 mAh/g。  相似文献   

17.
Material design in terms of their morphologies other than solid nanoparticles can lead to more advanced properties. At the example of iron oxide, we explored the electrochemical properties of hollow nanoparticles with an application as a cathode and anode. Such nanoparticles contain very high concentration of cation vacancies that can be efficiently utilized for reversible Li ion intercalation without structural change. Cycling in high voltage range results in high capacity (~132 mAh/g at 2.5 V), 99.7% Coulombic efficiency, superior rate performance (133 mAh/g at 3000 mA/g) and excellent stability (no fading at fast rate during more than 500 cycles). Cation vacancies in hollow iron oxide nanoparticles are also found to be responsible for the enhanced capacity in the conversion reactions. We monitored in situ structural transformation of hollow iron oxide nanoparticles by synchrotron X-ray absorption and diffraction techniques that provided us clear understanding of the lithium intercalation processes during electrochemical cycling.  相似文献   

18.
Graphene-encapsulated ordered aggregates of Fe(3)O(4) nanoparticles with nearly spherical geometry and hollow interior were synthesized by a simple self-assembly process. The open interior structure adapts well to the volume change in repetitive Li(+) insertion and extraction reactions; and the encapsulating graphene connects the Fe(3)O(4) nanoparticles electrically. The structure and morphology of the graphene-Fe(3)O(4) composite were confirmed by X-ray diffraction, scanning electron microscopy, and high-resolution transmission microscopy. The electrochemical performance of the composite for reversible Li(+) storage was evaluated by cyclic voltammetry and constant current charging and discharging. The results showed a high and nearly unvarying specific capacity for 50 cycles. Furthermore, even after 90 cycles of charge and discharge at different current densities, about 92% of the initial capacity at 100 mA g(-1) was still recoverable, indicating excellent cycle stability. The graphene-Fe(3)O(4) composite is therefore a capable Li(+) host with high capacity that can be cycled at high rates with good cycle life. The unique combination of graphene encapsulation and a hollow porous structure definitely contributed to this versatile electrochemical performance.  相似文献   

19.
新型锂离子电池负极材料COFe3Sb12   总被引:5,自引:0,他引:5  
用高能球磨方法制备出CoFe3Sb12合金粉末,研究了电化学性能。结果表明,CoFe3Sb12中的活性元素Sb可以与锂离子发生可逆电化学反应,其嵌锂产物为Li3Sb。CoFe3Sb12电极在20mA/g的电流密度下第一次可逆容量为396mAh/g。在材料中加入原子分数为50%的石墨(化学计量式为CoFe3Sb12-C16)后,以100mA/g进行充放电时,第一次可逆容量为380mAh/g。电极的循环寿命性能优良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号