首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
An ideal neural device enables long‐term, sensitive, and selective communication with the nervous system. To accomplish this task, the material interface should mimic the biophysical and the biochemical properties of neural tissue. By contrast, microfabricated neural probes utilize hard metallic conductors, which hinder their long‐term performance because these materials are not intrinsically similar to soft neural tissue. This study reports a method for the fabrication of monodisperse conducting polymer microcups. It is demonstrated that the physical surface properties of conducting polymer microcups can be precisely modulated to control electrical properties and drug‐loading/release characteristics.  相似文献   

2.
生物材料的离子束表面改性   总被引:6,自引:1,他引:5  
王昌祥  陈治清 《功能材料》1999,30(3):246-248
随着表面处理技术的发展,国内我对如何改善现有的生物材料表面的各种性能,如耐蚀性,耐磨性,生物相容性等进行了研究。各种表面处理的方法受到高度重视,其中离子束表面改性技术,由于其对材料本体无负效应,已被证明是最为成功的一种。本文在综述离子束改性技术在生物材料及器械方面应用的同时,提出将梯度功能材料的新概念与离子束改性技术相结合,用以制备表面性能优异的仿生生物材料。  相似文献   

3.
As a thriving member of the 2D nanomaterials family, MXenes, i.e., transition metal carbides, nitrides, and carbonitrides, exhibit outstanding electrochemical, electronic, optical, and mechanical properties. They have been exploited in many applications including energy storage, electronics, optoelectronics, biomedicine, sensors, and catalysis. Compared to other 2D materials, MXenes possess a unique set of properties such as high metallic conductivity, excellent dispersion quality, negative surface charge, and hydrophilicity, making them particularly suitable as inks for printing applications. Printing and pre/post-patterned coating methods represent a whole range of simple, economically efficient, versatile, and eco-friendly manufacturing techniques for devices based on MXenes. Moreover, printing can allow for complex 3D architectures and multifunctionality that are highly required in various applications. By means of printing and patterned coating, the performance and application range of MXenes can be dramatically increased through careful patterning in three dimensions; thus, printing/coating is not only a device fabrication tool but also an enabling tool for new applications as well as for industrialization.  相似文献   

4.
Sheet metal laminates are advanced materials with a very interesting combination of properties such as sound and vibration damping capacity. Some industrial applications have already been identified even though there is a lack of data on the behaviour of the material in service conditions and forming operations. The implementation of simulation software tools for these materials is essential to shorten the development time for new applications but it is presently much limited due to the lack of reliable data on the properties of these materials. Shear stress is one of these properties. Available standard tests have proved to be unsuitable mainly because of the geometry of the SML materials that leads to the measurement of the plastic deformation of the metallic layer rather than the shear of the bond. One device and test procedure is proposed in this work to help solve this problem. The obtained results are provided together with a comparison with the conventional tests and the subsequent validation of the entire scheme.  相似文献   

5.
目的 食品智能包装是一种能够感知食品品质变化并反馈给消费者的新型包装技术,通过总结静电纺丝纳米纤维在食品智能包装中的研究进展,为未来智能包装技术的发展提供借鉴。方法 介绍静电纺丝装置的原理及其影响因素,举例介绍适用于静电纺丝技术的各种生物基食品包装材料,总结静电纺丝技术在不同智能包装技术中的最新应用进展,并分析静电纺丝技术的优势。结论 静电纺丝纳米纤维具有孔隙率高、比表面积大、材料选择灵活、非热工艺等优点,将它与智能包装集成应用可提高智能包装膜的稳定性和灵敏性,进一步提高了智能包装膜的性能。  相似文献   

6.
7.
PCPDTBT-SO3K (CPE-K), a conjugated polyelectrolyte, is presented as a mixed conductor material that can be used to fabricate high transconductance accumulation mode organic electrochemical transistors (OECTs). OECTs are utilized in a wide range of applications such as analyte detection, neural interfacing, impedance sensing, and neuromorphic computing. The use of interdigitated contacts to enable high transconductance in a relatively small device area in comparison to standard contacts is demonstrated. Such characteristics are highly desired in applications such as neural-activity sensing, where the device area must be minimized to reduce invasiveness. The physical and electrical properties of CPE-K are fully characterized to allow a direct comparison to other top performing OECT materials. CPE-K demonstrates an electrical performance that is among the best reported in the literature for OECT materials. In addition, CPE-K OECTs operate in the accumulation mode, which allows for much lower energy consumption in comparison to commonly used depletion mode devices.  相似文献   

8.
Stimuli‐responsive smart optical materials hold great promise for applications in active optics, display, sensing, energy conversion, military camouflage, and artificial intelligence. However, their applications are greatly restricted by the difficulty of tuning different optical properties within the same material, especially by a single stimulus. Here, magnetic modulations of multiple optical properties are demonstrated in a crystalline colloidal array (CCA) of magnetic nanorods. Small‐angle X‐ray scattering studies reveal that these nanorods form an unusual monoclinic crystal in concentrated suspensions. The CCA exhibits optical anisotropy in the form of a photonic bandgap and birefringence, thus enabling magnetic tuning of the structural color and transmittance at a rate of 50 Hz. As a proof‐of‐concept, it is further demonstrated that the fabrication of a multifunctional device for display, anticounterfeiting, and smart‐window applications based on this multiple magneto‐optical effect. The study not only provides a new model system for understanding colloidal assembly, but also opens up opportunities for new applications of smart optical materials for various purposes.  相似文献   

9.
Two-dimensional (2D) layered materials,transition-metal dichalcogenides,and black phosphorus have attracted considerable interest from the viewpoints of fundamental physics and device applications.The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier,owing to the remarkable optical properties of these materials and their prospects for new devices.Herein,we report the anisotropic and thicknessdependent optical properties of a 2D layered monochalcogenide of germanium sulfide (GeS).Three Raman-scattering peaks corresponding to the B3g,A1g,and A2g modes with a strong polarization dependence are demonstrated in the GeS flakes,which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS.Photoluminescence (PL) is observed with a peak at ~1.66 eV that originates from the direct optical transition in GeS at room temperature.The polarization-dependent characteristics of the PL,which are revealed for the first time,along with the demonstration of anisotropic absorption,indicate an obvious anisotropic optical transition near the band edge of GeS,which is supported by density functional theory calculations.The significantly thickness-dependent PL is observed and discussed.This anisotropic layered GeS presents opportunities for the discovery of new physical phenomena and will find applications that exploit its anisotropic properties,such as polarization-sensitive photodetectors.  相似文献   

10.
Organic-based magnets are intriguing materials with unique magnetic and electronic properties that can be tailored by chemical methodology. By using molecular layer deposition (MLD), we demonstrate the thin film fabrication of V[TCNE: tetracyanoethylene](x), of the first known room temperature organic-based magnet. The resulting films exhibit improvement in surface morphology, larger coercivity (80 Oe), and higher Curie temperature/thermal stability (up to 400 K). Recently, the MLD method has been widely studied to implement fine control of organic film growth for various applications. This work broadens its application to magnetic and charge transfer materials and opens new opportunities for metal-organic hybrid material development and their applications in various multilayer film device structures. Finally, we demonstrate the applicability of the multilayer V[TCNE](x) as a spin injector combining LSMO, an standard inorganic magnetic semiconductor, for spintronics applications.  相似文献   

11.
The mutations of bacteria due to the excessive use of antibiotics, and generation of antibiotic-resistant bacteria have made the development of new antibacterial compounds a necessity. MXenes have emerged as biocompatible transition metal carbide structures with extensive biomedical applications. This is related to the MXenes’ unique combination of properties, including multifarious elemental compositions, 2D-layered structure, large surface area, abundant surface terminations, and excellent photothermal and photoelectronic properties. The focus of this review is the antibacterial application of MXenes, which has attracted the attention of researchers since 2016. A quick overview of the synthesis strategies of MXenes is provided and then summarizes the effect of various factors (including structural properties, optical properties, surface charges, flake size, and dispersibility) on the biocidal activity of MXenes. The main mechanisms for deactivating bacteria by MXenes are discussed in detail including rupturing of the bacterial membrane by sharp edges of MXenes nanoflakes, generating the reactive oxygen species (ROS), and photothermal deactivating of bacteria. Hybridization of MXenes with other organic and inorganic materials can result in materials with improved biocidal activities for different applications such as wound dressings and water purification. Finally, the challenges and perspectives of MXene nanomaterials as biocidal agents are presented.  相似文献   

12.
以石墨烯为代表的二维材料具有优异的本征性质, 例如高表面积和电导率, 但其宏观块体材料的性质仍不理想。这是由于石墨烯片层堆叠损失了有效的表面; 片层之间联结较弱导致接触电阻和热阻增大。原则上二维材料的三维化设计能避免上述问题, 将纳米尺度的优异性质传递到宏观尺度, 获得高表面积、高导电、贯通孔道和优良机械性能的块体材料。二维材料多孔块体可用于电极、吸附剂和弹性体等。发泡法工艺简单、成本低, 是近年来制备二维材料泡沫体的主要方法。本文系统总结了发泡法的基本原理, 综述了石墨烯、氮化硼等二维材料泡沫体的研究进展, 展望了二维材料泡沫体在能源、环境等方面的应用前景。  相似文献   

13.
Eutectic gallium–indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.  相似文献   

14.
碳纳米管在超级电容器中的应用研究进展   总被引:6,自引:4,他引:6  
吴锋  徐斌 《新型炭材料》2006,21(2):176-184
超级电容器是近年来发展起来的一种新型储能装置。碳纳米管由于具有独特的中空结构,良好的导电性和高的比表面积,被认为是超级电容器理想的电极材料之一,引起了广泛的关注。通过介绍碳纳米管在超级电容器中的应用研究进展,评述了碳纳米管、活化碳纳米管、碳纳米管/金属氧化物复合物以及碳纳米管/导电聚合物复合物用做超级电容器电极材料的特点和性能。认为单纯的碳纳米管由于比表面积小,比容量偏低。化学活化可以显著提高碳纳米管的比表面积,增大其比电容。将碳纳米管与准电容材料金属氧化物或导电聚合物复合。可以发挥各自的优势,从而得到低成本、高性能的复合电极材料,将是今后发展的一个方向。  相似文献   

15.
Nanotechnology and nanoengineering includes a novel class of materials that are gaining significant recognition to pursuit technological/biological advances in diverse fields including, biology, medicine, electronics, engineering etc. due to their unique size- and shape-dependent intrinsic physicochemical, optoelectronic and biological properties. Characteristics such as high surface to volume ratios and quantum confinement results in materials that are qualitatively different from their bulk counterparts. These properties not only make them suitable for numerous applications in existing and emerging technologies, but also have outstanding role in many fields that provide inspiration for their fabrication. In Today's trend nanotechnology is spreading vigorously where researchers all over the world are focusing towards their synthesis and applications. Therefore, this review is helpful for the researchers in the field of nanobiotechnology/nanomedicine, providing a brief overview of nanotechnology, covering nanomaterial synthesis methods (with emphasis on environmentally benign greener approaches), their properties, and applications; such as drug delivery, bio-labeling, nanotoxicity etc. The influence of synthesis methods and surface coatings/stabilizing agents and their subsequent applications is discussed, and a broad outline on the biomedical applications into which they have been implemented is also presented.  相似文献   

16.
Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long‐term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long‐term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high‐density, stretchable electrode grid based on an inert, high‐performance composite material comprising gold‐coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications.  相似文献   

17.
Recent efforts and advances in additive manufacturing (AM) on different types of new materials are presented and reviewed. Special attention is paid to the material design of cladding layers, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the AM process, and the resulted microstructures and properties, as well as the relationship between these factors. Thereafter, the trend of development in the future is forecasted, including: Effects of the particles size and size distribution of powders; Approaches for producing fine microstructures; Opportunities for creating new materials by AM; Wide applications in reconditioning of damaged components; Challenges for deep understanding and applications of the AMed new materials. The idea of “Develop Materials” or “Create Materials” by AM is highlighted, but a series of scientific, technological and engineering problems remain to be solved in future.  相似文献   

18.
In this paper we present a method based on artificial neural networks (ANN) and the use of only one amorphous semiconductor detector to predict the wavelength of incident laser. Amorphous semiconductors and especially amorphous hydrogenated silicon, a-Si:H, are now widely used in many electronic devices, such as solar cells, many types of position sensitive detectors and X-ray imagers for medical applications. In order to study the electrical properties and detection characteristics of thin films of a-Si:H, n-i-p structures have been simulated by SILVACO software. The basic electronic properties of most of the materials used are known, but device modeling depends on a large number of parameters that are not all well known. In addition, the relationship between the shape of the induced anode current and the wavelength of the incident laser leads to complicated calculations. Soft data-based computational methods can model multidimensional non-linear processes and represent the complex input-output relation between the form of the output signal and the wavelength of incident laser.  相似文献   

19.
Zinc oxide (ZnO) is an important material for its potential applicability to short-wavelength optoelectronic devices such as light emitting diodes (LEDs) and laser diodes (LDs). Nonpolar ZnO materials have been developed in recent years to avoid the strong internal electric fields in active regions of optoelectronic devices and improve luminescence efficiency. The growth and physical properties of nonpolar ZnO films, which are essential for fabricating optoelectronic devices and improving device performance, still remains not well understood. In this review, the technologies for preparation of nonpolar ZnO epitaxial films are summarized, and recent developments are described. Then the main characteristics of nonpolar ZnO films are discussed with the deviations from those of polar ZnO films, including morphology, structural defects, anisotropic strain, optical, and electrical properties. The anisotropic electron transport and strains correlated strongly with the anisotropic surface morphologies of nonpolar ZnO films. Fabricating nonpolar ZnO films with high quality should be further developed to decrease the structural defect densities for substantial improvement of device performance, and intensive studies on their characteristics are especially important for device applications.  相似文献   

20.
This review focuses on the application of nanomaterials for neural interfacing. The junction between nanotechnology and neural tissues can be particularly worthy of scientific attention for several reasons: (i) Neural cells are electroactive, and the electronic properties of nanostructures can be tailored to match the charge transport requirements of electrical cellular interfacing. (ii) The unique mechanical and chemical properties of nanomaterials are critical for integration with neural tissue as long‐term implants. (iii) Solutions to many critical problems in neural biology/medicine are limited by the availability of specialized materials. (iv) Neuronal stimulation is needed for a variety of common and severe health problems. This confluence of need, accumulated expertise, and potential impact on the well‐being of people suggests the potential of nanomaterials to revolutionize the field of neural interfacing. In this review, we begin with foundational topics, such as the current status of neural electrode (NE) technology, the key challenges facing the practical utilization of NEs, and the potential advantages of nanostructures as components of chronic implants. After that the detailed account of toxicology and biocompatibility of nanomaterials in respect to neural tissues is given. Next, we cover a variety of specific applications of nanoengineered devices, including drug delivery, imaging, topographic patterning, electrode design, nanoscale transistors for high‐resolution neural interfacing, and photoactivated interfaces. We also critically evaluate the specific properties of particular nanomaterials—including nanoparticles, nanowires, and carbon nanotubes—that can be taken advantage of in neuroprosthetic devices. The most promising future areas of research and practical device engineering are discussed as a conclusion to the review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号