首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel class of fiber-optic evanescent-wave sensor was constructed on the basis of modification of the unclad portion of an optical fiber with self-assembled gold colloids. The optical properties and, hence, the attenuated total reflection spectrum of self-assembled gold colloids on the optical fiber changes with different refractive index of the environment near the colloidal gold surface. With sucrose solutions of increasing refractive index, the sensor response decreases linearly. The colloidal gold surface was also functionalized with glycine, succinic acid, or biotin to enhance the selectivity of the sensor. Results show that the sensor response decreases linearly with increasing concentration of each analyte. When the colloidal gold surface was functionalized with biotin, the detection limit of the sensor for streptavidin was 9.8 x 10(-11) M. Using this approach, we demonstrate proof-of-concept of a class of refractive index sensor that is sensitive to the refractive index of the environment near the colloidal gold surface and, hence, is suitable for label-free detection of molecular or biomolecular binding at the surface of gold colloids.  相似文献   

2.
In this work, a simple and mild procedure was employed to synthesize polydopamine-reduced graphene oxide (PDA-RGO) nanocomposites, where the sheets of graphene oxide were functionalized firstly with PDA through self-polymerization. FTIR was used to confirm that the GO sheets had been functionalized successfully with PDA and reduced. Besides, UV-Vis and X-ray diffraction spectroscopy were employed to further demonstrate the formation of RGO. The electrochemical property of the PDA-RGO has been studied by the determination of hydrazine. The results indicated that the electrochemical oxidation of hydrazine was significantly improved by the obtained PDA-RGO nanocomposite due to the increased available surface area of electrode. A quick amperometric response was observed with the electrochemical sensor based on PDA-RGO nanocomposite for the hydrazine measurement in a wide linear range of 0.03–100 μM, where the limit of the detection was 0.01 μM.  相似文献   

3.
We report label-free protein detection using a microfabricated cantilever-based sensor that is functionalized with DNA aptamers to act as receptor molecules. The sensor utilizes two adjacent cantilevers that constitute a sensor/reference pair and allows direct detection of the differential bending between the two cantilevers. One cantilever is functionalized with aptamers selected for Taq DNA polymerase while the other is blocked with single-stranded DNA. We have found that the polymerase-aptamer binding induces a change in surface stress, which causes a differential cantilever bending that ranges from 3 to 32 nm depending on the ligand concentration. Protein recognition on the sensor surface is specific and has a concentration dependence that is similar to that in solution.  相似文献   

4.
The vascular endothelial growth factor, VEGF, is an important biomarker for different diseases and clinical disorders. We present a series of optical aptasensor-based sensing platforms for VEGF that include the following: (i) A FRET-based sensor that involves the VEGF-induced separation of aptamer-functionalized quantum dots blocked by a quencher nucleic acid (detection limit 1 nM). (ii) A FRET-based sensor based on the VEGF-induced assembly of the aptamer subunits functionalized with QDs and a dye acceptor (Cy5), respectively (detection limit 12 nM). (iii) A chemiluminescence aptasensor based on VEGF-induced assembly of a hemin/G-quadruplex catalyst (detection limit 18 nM). (iv) A chemiluminescence aptasensor based on the VEGF-stimulated assembly of two aptamer subunits into the hemin/G-quadruplex catalyst (detection limit 2.6 nM). (v) A chemiluminescence resonance energy transfer (CRET) aptasensor based on the VEGF-induced assembly of a semiconductor QDs-hemin/G-quadruplex supramolecular structure (detection limit 875 pM). Furthermore, an amplified optical aptasensor system based on the Exonuclease III (Exo III) recycling of the VEGF analyte was developed. In this system, one aptamer subunit is modified at its 5' and 3' ends with QDs and a black hole quencher, respectively. The VEGF-induced self-assembly of the aptamer subunits result in the digestion of the quencher units and the autonomous recycling of the analyte, while triggering-on the luminescence of the QDs (detection limit 5 pM). The system was implemented to analyze VEGF in human sera samples.  相似文献   

5.
A novel technique for detection of hydrogel swelling intended for use as a chemical or biological sensor, but also generally applicable for obtaining high-precision hydrogel swelling data, is described. The underlying design principle is that a hydrogel bound to the tip of an optical fiber constituting the environmental sensing element makes up a Fabry-Perot cavity for high-resolution detection of the optical length. The interference of light guided by the optical fiber and reflected at the two interfaces, fiber-gel and gel-solution, enables optical detection of the optical path length within the gel and degree of swelling of the gel. Acrylamide-based hydrogels with various molar fractions of the cationic monomer, N-(3-dimethylaminopropyl)acrylamide, were fabricated at the end of the fiber to demonstrate the feasibility of the approach. These sensors were investigated in solutions of varying ionic strength and pH. Relative gel length changes of the approximately 50-microm half-spherical gels were determined with a precision of approximately 2 nm. Moreover, the combination of good reproducibility and resolution of determination of swelling supports measurements of ionic strength changes in the millimolar range. Kinetic measurements for gel swelling induced by changes in ionic strengths had a time constant of approximately 2 s (half-spherical gel with 60-microm radius), whereas the time constants for gel swelling induced by changes in pH were observed in the range 90-130 s. Thus, different processes dictate the swelling rate in the two different cases. The results show that hydrogel equilibrium swelling and kinetics can be determined by the optical interference method with nanometer resolution, thus providing a unique platform for characterization of hydrogels swelling in general, and using functionalized hydrogels as biological sensors in particular.  相似文献   

6.
This study demonstrates the possibility of a reversible naked-eye detection method for submicromolar levels of cadmium(II) using the Langmuir-Blodgett (L-B) technique. Molecular assemblies of 4-n-dodecyl-6-(2-thiazolylazo)resorcinol are transferred on precleaned microscopic glass slides, to act as a sensing probe. Isotherm (pi-A) measurements were performed to ensure the films' structural rigidity and homogeneity during sensor fabrication. The sensor surface morphology was characterized using atomic force microscopy and scanning electron microscopy. The probe membrane exhibits visual color transition, forming a series of reddish-orange to pinkish-purple complexes with cadmium, over a wide concentration range (0.04-44.5 microM). Cadmium response kinetics and the changes in the sensors' intrinsic optical properties were monitored using absorption spectroscopy and further confirmed using X-ray photoelectron spectroscopy. A hybrid L-B film composite of poly(vinyl stearate) and poly(vinyl-N-octadecylcarbamate) were investigated for enhancing sensor performance. The sensor was tested for its practical approach to prove its cadmium selectivity and sensitivity amid common matrix constituents using synthetic mixtures and real water samples. Using the sensor strips, the respective lower limits of cadmium detection and quantification are 0.039 and 0.050 microM, as estimated from a normalized linear calibration plot.  相似文献   

7.
Zhou Y  Yu B  Shiu E  Levon K 《Analytical chemistry》2004,76(10):2689-2693
Rapid and specific recognition of methylphosphonic acid (MPA), the degradation product of nerve agents sarin, soman, VX, etc., was achieved with potentiometric measurements using a chemical sensor fabricated by a surface imprinting technique coupled with a nanoscale transducer, indium tin oxide (ITO). An octadecylsiloxane thin layer was covalently bound to the ITO-coated glass surface in the presence of MPA. After extraction of MPA, potentiometric measurements showed selective detection of MPA. The selectivity of the sensor has been tested on other alkylphosphonic acids, such as ethylphosphonic acid and propylphosphonic acid, as well as tert-butylphosphonic acid. The viability of the sensor in the presence of other chemical analogues, such as organophosphorus pesticides and herbicides, was investigated.  相似文献   

8.
High-quality zinc oxide (ZnO) nanowires were synthesized using the atmospheric chemical vapor deposition technique and were appropriately characterized. Subsequently, the nanowire surface was covalently grafted with 1-pyrenebutyric acid (PBA) fluorophore, and surface-sensitive X-ray photoelectron spectroscopy and Fourier transform infrared-attenuated total reflectance spectroscopy were utilized to confirm the functionalization of 1-pyrenebutyric acid on the nanowire surface. Additionally, photoluminescence (PL) measurements were used to evaluate the optical behavior of pristine nanowires. Through fluorescence quenching of 1-pyrenebutyric acid by p-nitrophenol, a detection limit of 28 ppb was estimated. Based on these findings, ZnO nanowires functionalized with 1-pyrenebutyric acid are envisaged as extremely sensitive platforms for the ultra-trace detection of p-nitrophenol in biological systems.  相似文献   

9.
We propose and analyse a novel optical pressure sensor based on series-coupled double microring resonators (SDMRRs) on a simple beam. The pressure applied on the sensor is measured through the change of the optical transmission spectrum at the output port. The optical transmission performances of the SDMRRs have been analysed and compared with the single and paralleled-coupled structures by the method of finite element analysis and numerical simulation. The simulation results showed that the stress sensitivity is 0.0225?kPa–1 and linear measurement range of the sensor is 30?kPa. Furthermore, the influence of the amplitude transmission coefficient, half round phase shift and microring radius on the sensitivity have been investigated to optimize the sensor performance. This proposed sensor can be used for the smaller pressure detection in automotive, aerospace, oil/logging equipment and other harsh environmental application.  相似文献   

10.
This study proposes a fiber-optic temperature sensor with a single-mode fiber tip covered with a thermo-sensitive polymer resin. The temperature is sensed by measuring the Fresnel reflection from the optical fiber/polymer interface. Because the thermo-optic coefficients differ between the optical fiber and the polymer, the in situ temperature can be measured even in curing composite materials. In initial experiments, the proposed sensor successfully measured and recovered the temperature information. The measured sensor data were linearly correlated, with an R2 exceeding 0.99. The standard deviation in the long-term measurements of constant temperature was 2.6%. The durability and stability of the sensor head material in long-term operation was validated by Fourier transform infrared spectroscopy and X-ray diffraction analysis. In further experiments, the suggested miniature temperature sensor obtained the internal temperatures of curing composite material over a wide range (30–110 °C).  相似文献   

11.
Optoelectronic consumer products that are widely employed in the office and home attract attention for optical sensor applications due to (1) their cost advantage over analytical instruments produced only in small quantities, (2) robustness in operation due to the detailed manufacturability improvements, and (3) ease of operation. We demonstrate here a new approach for quantitative chemical/biochemical sensing when analog signals are acquired from conventional optical disk drives, and these signals are used for quantitative detection of optical changes of sensor films deposited on conventional CD and DVD optical disks. Because we do not alter manufacturing process of optical disks, any disk can be employed for deposition and readout of sensor films. The optical disk drives also perform their original function of reading and writing digital content to optical media because no optical modifications are introduced to obtain the analog signal. Such a sensor platform is quite universal and can be applied for chemical and biological quantitative detection, as well as for monitoring of changes of physical properties of regions deposited onto a CD or DVD (e.g., during combinatorial screening of materials). As a model example, we demonstrate the concept using chemical detection of ionic species such as Ca2+ in liquids (e.g., blood, urine, or water). Colorimetric calcium-sensitive sensor films were deposited onto a DVD, exposed to water with different concentrations of Ca2+, and quantified in the optical disk drive. The developed lab-on-DVD system demonstrated a 5 ppm detection limit of Ca2+ determinations, similar or slightly better than that achieved using a conventional fiber-optic portable spectrometer. This detection limit corresponded to a 0.023 absorbance unit resolution, as determined by the measurement of the same colorimetric films with a portable spectrometer. Determinations of Ca2+ unknowns using the lab-on-DVD system demonstrated +/-5 ppm accuracy and 2-5% relative standard deviation precision in predicting 100 ppm Ca2+.  相似文献   

12.
A high conductivity composite based on covalent organic frameworks/gold nanoparticles (TAPB-PDA-COFs/AuNPs, TAPB: 3,5-tris(4-aminophenyl)benzene, PDA: p-phthalaldehyde) was prepared by a simple in-situ synthesized method and a novel electrochemical sensor based on TAPB-PDA-COFs/AuNPs was constructed for detection of Enrofloxacin (ENR). A variety of different characterization techniques including ultraviolet‐visible spectrophotometer (UV–vis), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the TAPB-PDA-COFs/AuNPs. ENR was detected by square wave stripping voltammetry (SWV) according to the relationship between the ENR concentration and the oxidation peak current. The result showed that TAPB-PDA-COFs/AuNPs was synthesized successfully. The electrochemical sensor showed two linear ranges in the range of 0.05–10 μmol L?1 and 10–120 μmol L?1 with the limit of detection of 0.041 μmol L?1 (S/N = 3). The good recoveries (96.7–102.2%) and low RSDs (0.9–6.4%) indicated the possibility of using this sensor for actual sample detection. Therefore, TAPB-PDA-COFs/AuNPs-based electrochemical sensor showed good performance in detecting ENR, and would be a potential candidate for the development of fluoroquinolones determination.  相似文献   

13.
With the development of the human–computer interaction, smart panel requires more of lightweight and transparency. However, most smart panels have been developed based on bulky metal materials and integrated external circuits, which lack flexibility and transparency. Here we demonstrate an ultrathin and flexible tactile sensor based on few-layer graphene films (GFs). The optical transmittance of the sensor is up to 80% in the visible range, which provides optical transparency enough for an aesthetic view. The sensor is assembled through a very simple method consisted a polyethylene terephthalate substrate and two unconnected GFs. The as-assembled sensors can reflect one-dimensional (1D) touch position with a high sensitivity of 0.23 mm?1. The tactile sensor can be used in the monitoring of finger touch, as well as in the detection of liquid temperature. The GFs-based tactile sensor was transferred on the glass substrate to form a smart window, which can warn of a rainy weather coming without sacrificing the window visual functionalities. In addition, a flexible smart panel has been assembled only connect two external circuits and succeed in reappearing the 2D touch path.  相似文献   

14.
Xu P  Yu H  Li X 《Analytical chemistry》2011,83(9):3448-3454
Featuring a huge surface-to-volume ratio, synthesized SBA-15 mesoporous silica is functionalized by inner-channel-wall modification of sensing groups for highly specific chemical-vapor detection at trace level. With the developed sensing material loaded on resonant microcantilevers, the specifically adsorbed chemical-vapor molecules act as an added mass to shift the cantilever resonant frequency for gravimetric sensing signal readout. Two kinds of sensing materials for trinitrotoluene (TNT) and ammonia/amine are respectively prepared by inner-wall layer-by-layer grafting functionalization. By using hexafluoro-2-propanol-functionalized mesoporous silica (HFMS), experimental results show highly specific and rapid detection of TNT vapor, with a ppt-level detection limit; functionalized with a carboxyl (COOH) group, the mesoporous silica is loaded onto the cantilever resonating sensor that experimentally exhibits an ultrafine detection limit of tens of ppb to ammonia/amine gases.  相似文献   

15.
An acoustic fiber sensor for measurement of ultrasonic waves, which used the approximate Raman-Nath diffraction effect where light diffraction waves were generated in an optical fiber by strain due to the ultrasonic waves, was proposed and examined. In order to characterize the acoustic fiber sensor as a basic study, measurements of low-frequency ultrasonic waves in water were examined using a step index fiber operating as a detection sensor. The results showed that characteristics of detected signals agreed with the theoretical prediction based on Fraunhofer diffraction. This indicates that our proposed fiber sensor can be used for the detection of low-frequency ultrasonic waves as well as the transmission of light diffraction signals.  相似文献   

16.
Outstanding functional tunability underpinning metal–organic framework (MOF) confers a versatile platform to contrive next‐generation chemical sensors, optoelectronics, energy harvesters, and converters. A rare exemplar of a porous 2D nanosheet material constructed from an extended 3D MOF structure is reported. A rapid supramolecular self‐assembly methodology at ambient conditions to synthesize readily exfoliatable MOF nanosheets, functionalized in situ by adopting the guest@MOF (host) strategy, is developed. Nanoscale confinement of light‐emitting molecules (as functional guest) inside the MOF pores generates unusual combination of optical, electronic, and chemical properties, arising from the strong host–guest coupling effects. Highly promising photonics‐based chemical sensing opened up by the new guest@MOF composite systems is shown. By harnessing host–guest optochemical interactions of functionalized MOF nanosheets, detection of an extensive range of volatile organic compounds and small molecules important for many practical applications has been accomplished.  相似文献   

17.
An acoustic fiber sensor for measurement of ultrasonic waves, which used the approximate Raman-Nath diffraction effect where light diffraction waves were generated in an optical fiber by strain due to the ultrasonic waves, was proposed and examined. In order to characterize the acoustic fiber sensor as a basic study, measurements of low-frequency ultrasonic waves in water were examined using a step index fiber operating as a detection sensor. The results showed that characteristics of detected signals agreed with the theoretical prediction based on Fraunhofer diffraction. This indicates that our proposed fiber sensor can be used for the detection of low-frequency ultrasonic waves as well as the transmission of light diffraction signals.  相似文献   

18.
We have developed a novel platform for selective binding of magnetic labels on planar Hall resistance sensor (PHR) for biosensing applications. The photoresist (PR) micro wells were prepared on the PHR sensor junctions to trap the magnetic bead at specified locations on the sensor surface and thin layer of Au was sputtered in the PR wells immobilize bimolecular. The Au surface is functionalized with single-stranded oligonucleotide and further biotin was used to immobilize streptavidin coated magnetic labels (Dynabeads Myone 1.0 microm, Invitrogen Co.). After removal of the PR wells on the sensor surface the non specific binding magnetic labels were successfully removed and only the chemically bounded magnetic labels were remained on the Au surface for detection of biomolecules using PHR sensor. We controlled the number of magnetic labels on the PHR sensor surface by using different sizes of the PR well on the junctions. The specifically bounded magnetic labels were successfully detected by characterizing the individual PHR sensor junctions. This technique enables the complete control over the magnetic labels for selective binding of biomolecules on the sensor surface for increasing the sensitivity of the PHR sensor as well as removal of the non specific bindings on the sensor surface.  相似文献   

19.
A microcantilever array sensor with cantilevers differentially functionalized with self-assembled monolayers (SAMs) of thiolated ligands is prepared by simultaneous capillary coating. This array is described for the detection of metal ions including Li+, Cs+, Cu2+, Co2+, Fe3+, and Al3+. Binding of the charged metal cations to the surface of the microcantilever sensors produces surface stress that causes bending of the cantilevers that is detected as tip deflection using an array of vertical cavity surface emitting lasers and a position-sensitive detector. Optimization studies of the nanostructured dealloyed surface were performed for SAMs based on their response to Cu2+ cations. Sensor performance experiments demonstrate good sensitivity toward metal ions, with limits of detection as low as 10(-8) molar. A multiplex capillary coating method for cantilever array creation is demonstrated and validated based on surface-enhanced Raman spectra obtained from adjacent cantilevers that were functionalized with different thiolated SAMs. The cantilever array coated with a range of thiolated ligands was exposed to the group of metal ions. The response characteristics of each metal ion show substantial diversity, varying not only in response magnitude, but response kinetics. A pattern recognition algorithm based on a combination of independent component analysis and support vector machines was able to validate that the sensor array response profiles produced enough information content that metal ions could be reliably classified with probabilities as high as 89%.  相似文献   

20.
This article reports the synthesis and characterisation of Barium titanate (BaTiO3) nanocomposite and its application as opto-electronic humidity sensor. Titanium tetrachloride and barium hydroxide were mixed in molar ratio 1?:?1 in deionised water under continuous stirring at room temperature. Later, sodium hydroxide solution was added to above solution with continuous stirring. Finally, BaTiO3 gel was obtained. The synthesised nano-composite material was characterised using a scanning electron microscope, X-ray diffraction (XRD) and UV-Visible spectrophotometer. SEM image of the composite film shows that the film is porous having uniform grains. From XRD the minimum crystallite size of BaTiO3 was found to be 8?nm using Debye–Scherer formula. UV-Visible absorption spectroscopy was used for optical characterisation of the film. It was found that the optical band gap of the composite material was 3.50?eV. Barium titanate thin film was deposited on the base of an equilateral prism using sol–gel spin coating process at 4000?rpm. The humidity sensing properties of the film was investigated at different angles of incidence. It was observed that the intensity of reflected light increased with an increase in relative humidity (%RH) in the range 5–95% at a particular angle of incidence. Sensing element has maximum sensitivity ~6?µW/%RH, which is quite significant for sensor fabrication purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号