首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
This paper studies the degradation of the tensile properties of prestressed basalt fiber-reinforced polymer (BFRP) and hybrid FRP tendons in a marine environment. Two levels of prestressing toward typical prestressing applications were applied in the experiment. The variations of tensile strength, elastic modulus and the relevant coefficient of variation (CV) were first investigated. The effect of prestressing on tensile property degradation was discussed. The characteristics of prestressed hybrid FRP tendons in a marine environment simulated by a salt solution were clarified. Moreover, a prediction model of BFRP tendons with different levels of prestressing in a marine environment was proposed. The results show that the BFRP tendons’ superior resistance to salt corrosion and the degradation rate of their tensile strength is nonlinearly proportional to the prestressing ratios, whereas the elastic modulus remains constant regardless the prestressing ratio and aging duration. Although prestressing on BFRP tendons accelerates degradation, it can still lower the variation of the strength of the BFRP tendon. Hybridization can lower the degradation rate of basalt and carbon FRP (B/CFRP) without prestressing, whereas basalt and steel-wire FRP (B/SFRP) exhibit much faster degradation due to the internal corrosive steel wires. The model regression by the Napierian logarithm equation well represents the degradation trend of BFRP tendons under different levels of prestressing.  相似文献   

2.
In this study, mechanical behavior of thermoplastic composites reinforced with two-dimensional plain woven homogeneous and hybrid fabrics of Kevlar/basalt yarns was studied. Five types (two homogeneous and three hybrids) of composite laminates were manufactured using compression molding technique with polypropylene (PP) resin. Static tensile and in-plane compression tests were carried out to evaluate the mechanical properties of the laminates. The tension and in-plane compression tests had shown that the composites with the combination of Kevlar and basalt yarns present better tensile and in-plane compressive behavior as compared to their base composites. Improvement in the properties such as elastic modulus, strength and failure strain in both tension and in-plane compression was observed due to the hybridization. Numerical simulations were performed in ABAQUS/Standard by implementing a user-defined material subroutine (VUMAT) based on Chang-Chang criteria. Good agreement between the experimental and numerical simulations was achieved in terms of damage patterns.  相似文献   

3.
Basalt fiber (BF) filled high density polyethylene (HDPE) and co-extruded wood plastic composites (WPCs) with BF/HDPE composite shell were successfully prepared and their mechanical, morphological and thermal properties characterized. The BFs had an average diameter of 7 μm with an organic surfactant surface coating, which was thermally decomposed at about 210 °C. Incorporating BFs into HDPE matrix substantially enhanced flexural, tensile and dynamic modulus without causing a noticeable decrease in the tensile and impact strength of the composites. Micromechanical modeling of tensile properties for the BF/HDPE composites showed a good fit of the selected models to the experimental data. Compared to neat HDPE, BF/HDPE composites had reduced linear coefficient of thermal expansion (LCTE) values. The use of the pure HDPE and BF/HDPE layers over a WPC core greatly improved impact strength of core–shell structured composites. However, the relatively less-stiff HDPE shell with large LCTE values decreased the overall composite modulus and thermal stability. Both flexural and thermal expansion properties were enhanced with BF reinforced HDPE shells, leading to well-balanced properties of core–shell structured material. Cone calorimetry analysis indicated that flammability performance of core–shell structured composites was improved as the BF content increased in the shell layer.  相似文献   

4.
甘蔗渣纤维增强聚丙烯复合材料的制备和力学性能   总被引:2,自引:0,他引:2  
利用注射成型制备了甘蔗渣纤维增强聚丙烯复合材料, 分析了纤维质量分数、 注射成型条件以及添加物对复合材料力学性能的影响。结果表明, 随着纤维质量分数的增加, 材料的弯曲模量呈递增趋势。由于甘蔗渣纤维热降解的发生, 材料的力学性能随筒体温度的增加呈下降趋势。在模具温度90℃、 注射间隔时间30s、 不同的筒体温度185℃和165℃的成型条件下, 材料的弯曲性能和冲击强度分别呈现最大值。添加了马来酸酐改性聚丙烯后, 材料的弯曲强度和冲击强度得到了提高。   相似文献   

5.
为了克服传统单丝断裂实验局限于透明及高应变树脂的缺点,进一步拓展其应用范围,将声发射技术与传统单丝断裂实验相结合以评估单丝复合材料界面性能.通过声发射技术监测了单丝复合材料的断裂过程,采用参数分析、波形分析以及聚类分析对单丝复合材料拉伸过程中的声发射信号特征进行研究,并与显微镜观察法测得的纤维断裂模式和界面剪切强度相对比。实验结果表明:声发射技术可以对单丝复合材料断裂过程中的断裂模式和界面性能进行高效评估,采用该方法分析得到的界面剪切强度与传统单丝断裂实验中的光弹花样观察分析结果一致。声发射技术可以拓展单丝断裂实验的研究对象,为单丝界面剪切强度的计算提供一种高效、通用的评价方法。  相似文献   

6.
为了研究连续单向纤维的层间混杂方式对复合材料力学性能及破坏方式的影响,采用碳纤维-玻璃纤维体积比为1∶1,以拉-挤成型法制备了具有不同层间混杂结构的连续单向纤维增强环氧树脂基复合材料,并研究了不同层间混杂结构的连续单向碳纤维-玻璃纤维增强环氧树脂基复合材料的力学性能及破坏形式。结果表明:具有层间混杂结构的复合材料抗拉强度处于纯碳纤维/环氧树脂复合材料和纯玻璃纤维/环氧树脂复合材料之间,复合材料的拉伸断裂方式为劈裂;具有层间混杂结构的复合材料的层间剪切强度均优于纯碳纤维/环氧树脂复合材料和纯玻璃纤维/环氧树脂复合材料,复合材料的剪切断裂方式为层间断裂。  相似文献   

7.
The fundamental characteristics of acoustic emission (AE) signals, such as the attenuation, and frequency dependency of AE signals, were investigated and the fracture process of the single fiber composite (s.f.c.) was examined. As a result, the frequencies of AE signals were almost unchanged, while the amplitudes attenuated greatly with the increment of the propagation length. This proved that the frequency analysis is an effective way in processing AE signals of composite materials. In the fracture process of the s.f.c., the number of AE events was in a good agreement with the number of fiber breakages, and the sources of AE signals were the failure modes at fiber breakages. Using the proposed time-frequency method of wavelet transform (WT) to process AE signals, the microfailure modes at a fiber breakage and the microfracture mechanism, such as the sequence of each failure mode and their interaction, were made clearer. These indicated that both processing methods of AE signals, fast-Fourier transform and WT, were powerful for identifying the microfailure modes and for elucidating the microfracture mechanisms in composite materials.  相似文献   

8.
为提高玄武岩纤维(BF)与水泥基体的界面结合力和桥接作用,分别采用HCl溶液(0~2.0mol/L)和NaOH溶液(0~2.0mol/L)对BF表面进行刻蚀糙化处理,研究纤维表面处理对BF增强水泥基复合材料的力学性能影响规律。结果表明:随着HCl溶液浓度增加,BF/水泥复合材料抗折强度与弯曲强度均先增加后降低,挠度呈现缓慢增加趋势,而抗压强度变化幅度较小;当HCl溶液浓度为1mol/L时,BF/水泥复合材料的强度与韧性最佳;碱处理BF后,BF/水泥复合材料的力学性能随NaOH浓度增加而显著降低,且复合材料韧性无明显改善;BF经HCl溶液腐蚀后的质量保留率变化规律与NaOH溶液腐蚀后的变化规律接近,而经HCl溶液腐蚀后BF强度保留率大于NaOH溶液腐蚀后的BF强度保留率。  相似文献   

9.
将玄武岩纤维置于混杂铺层的压缩侧,研究了碳纤维-玄武岩纤维混杂增强环氧树脂基复合材料的弯曲性能及混杂比对其弯曲性能的影响。通过对试样进行三点弯曲试验得到了材料的弯曲性能,并通过扫描电子显微镜观察材料的失效模式。与纯碳纤维增强环氧树脂基复合材料相比,当混杂比为16.7%和33.3%时,混杂复合材料的弯曲强度明显提升,弯曲强度分别提高12.4%和15.2%,但是其弯曲模量随着混杂比的提升而降低。混杂后的材料及玄武岩纤维增强环氧树脂基复合材料的失效位移都高于碳纤维增强环氧树脂基复合材料,断裂韧性明显提升。从侧面观察可以发现不同铺层在压缩侧、拉伸侧和中间层有不同的失效形式。   相似文献   

10.
The thermal decomposition behavior of phenolic fiber and phenolic resin (PR) matrix was investigated by using a thermo gravimetric analyzer in nitrogen. The ablative properties of the composite specimens were quantitatively evaluated by performing oxyacetylene flame test and exhaust plume ablative test with a small liquid motor. The ablative properties of phenolic–quartz hybrid fabric reinforced phenolic resin (P–Q/PR) composites were compared with those of phenolic fabric and quartz fabric reinforced (P/PR and Q/PR) composites. The patterns and microstructures of the ablated composite specimens were also studied, and the advantages of the hybrid reinforced composites under ablation conditions were interpreted. The phenolic fiber decomposed similarly to the manner in which the PR did. The mixture rule can be used to predict the mass loss rate of the P–Q/PR composites during the oxyacetylene flame test. After the oxyacetylene flame test, there was no crack or delamination can be observed in P–Q/PR composite specimens and the carbonaceous residue blocks which were produced by the phenolic fiber and the PR were attached well to the quartz fibers. The resistance to heat-flow erosion of the P–Q/PR composites had significantly improved and the mass loss of the P–Q/PR composites (24.6%) was much lower than those of the Q/PR composites (56.4%) and the P/PR composites (86.3%) in the exhaust plume ablative test with a small liquid motor. A vis-à-vis char layer of the P–Q/PR composites formed during this ablation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号