首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以水性纳米Al_2O_3溶胶、γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)和甲基三甲氧基硅烷(MTMS)为原料,采用溶胶凝胶法,制备了水性纳米Al_2O_3/聚硅氧烷杂化镁合金防腐涂层。采用电化学交流阻抗技术、动电位极化曲线等手段研究了纳米Al_2O_3/(GPTMS+MTMS)摩尔比对涂层的耐腐蚀性能的影响。结果表明,涂层的耐腐蚀性能随着摩尔比的增大呈现先增强后下降的趋势,其中摩尔比为1∶5的杂化涂层耐腐蚀性能最佳,在3.5%Na Cl溶液中浸泡75 h后的交流阻抗值为6.68×10~6Ω/cm^2,腐蚀电流密度为4.19×10^(-9)A/cm^2,比裸露AZ31B基板的腐蚀电流密度降低了4个数量级。另外,涂层的扫描电镜照片显示,纳米Al_2O_3粒子均匀分散于涂层之中,粒子与有机物粘连紧密,无明显的团聚现象。  相似文献   

2.
以水性纳米Al_2O_3溶胶、γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)和甲基三甲氧基硅烷(MTMS)为原料,采用溶胶凝胶法,制备了水性纳米Al_2O_3/聚硅氧烷杂化镁合金防腐涂层。采用电化学交流阻抗技术、动电位极化曲线等手段研究了纳米Al_2O_3/(GPTMS+MTMS)摩尔比对涂层的耐腐蚀性能的影响。结果表明,涂层的耐腐蚀性能随着摩尔比的增大呈现先增强后下降的趋势,其中摩尔比为1∶5的杂化涂层耐腐蚀性能最佳,在3.5%Na Cl溶液中浸泡75 h后的交流阻抗值为6.68×10~6Ω/cm~2,腐蚀电流密度为4.19×10~(-9)A/cm~2,比裸露AZ31B基板的腐蚀电流密度降低了4个数量级。另外,涂层的扫描电镜照片显示,纳米Al_2O_3粒子均匀分散于涂层之中,粒子与有机物粘连紧密,无明显的团聚现象。  相似文献   

3.
纳米TiO2涂层耐蚀性及抗紫外老化性能研究   总被引:1,自引:0,他引:1  
通过添加改性纳米TiO2获得纳米复合涂层.采用紫外线加速老化试验和盐雾试验考察纳米复合涂层的抗紫外老化腐蚀性能.利用电化学测试(EIS)监测老化过程涂层性能变化并研究了纳米TiO2材料在涂层老化过程中的作用.结果表明,纳米TiO2材料的加入能够同时提高彩涂板涂层的抗老化及耐腐蚀性能,纳米TiO2质量分数为1%左右时其抗老化及耐腐蚀性能最佳.  相似文献   

4.
为解决锌铝基耐蚀涂层在高速、强摩擦等特殊服役条件下的使用问题,将Al2O3纳米粒子添加到锌铝基耐蚀涂层中进行改性,以提高涂层的硬度和耐蚀性.研究了Al2O3纳米粒子及其添加量对涂层硬度、摩擦系数、附着强度、耐冲击性能和耐腐蚀性能的影响,并对涂层的微观组织和成分进行了分析.结果表明,添加Al2O3纳米粒子可显著提高锌铝基耐蚀涂层的硬度和耐蚀性能,降低摩擦系数,且对涂层的附着强度和耐冲击性能无负面影响.Al2O3纳米粒子在涂层中的均匀分散是获得涂层优异综合性能的必要条件.  相似文献   

5.
纳米SiO2对热镀锌钢板耐指纹涂层性能的影响研究   总被引:1,自引:0,他引:1  
通过中性盐雾试验、耐指纹性检测、导电性检测等研究了纳米SiO2对于耐指纹涂层性能的影响.结果表明:在同等涂层附着量(0.9~1.1 g/m2)条件下,含有气相纳米SiO2涂层的耐腐蚀性能优于含有液相纳米SiO2的涂层,且纳米SiO2粒径越小,其耐蚀性越高.研究发现,耐指纹涂层纳米SiO2含量大于7%时涂层具有耐指纹性,而涂层中纳米SiO2含量达到10%时导电性能趋于稳定.  相似文献   

6.
采用盐雾试验和电化学交流阻抗技术,研究了纳米TiO2对钢板涂层耐腐蚀性能的影响,并通过扫描电镜观察了纳米TiO2复合涂层断面形貌.研究表明,纳米TiO2复合涂层的耐腐蚀性能均优于未添加纳米TiO2涂层,当纳米TiO2添加量为1.5%(质量分数)时,涂层耐盐雾时间由420h提高到710h,涂层阻抗值也由107Ω·cm2增加至109Ω·cm2.从涂层断面观察发现,纳米TiO2添加量为1.5%(质量分数)时,颗粒较均匀分散,粘接紧密,形成较为致密的纳米复合涂层.  相似文献   

7.
为研制高性能电力金具防护涂层,首先,以羟基丙烯酸树脂和异氰酸酯为主要成膜物质,纳米石墨为填料,制备了不同纳米石墨含量的纳米石墨/聚氨酯复合涂料;然后,将涂料喷涂在电力热镀锌钢上,固化干燥后得到纳米石墨/聚氨酯复合涂层;最后,测试了纳米石墨/聚氨酯复合涂层的力学性能和耐磨性,并采用模拟酸雨试验、中性盐雾试验及电化学阻抗谱(EIS)研究了纳米石墨/聚氨酯复合涂层的耐腐蚀性能。结果表明:添加纳米石墨后,涂层与热镀锌钢的附着力有所提高,纳米石墨含量为2.0wt%的纳米石墨/聚氨酯复合涂层的耐磨性比未添加纳米石墨的空白涂层提高了92%,并且涂层中纳米石墨的分布较均匀,表现出良好的耐腐蚀性能。 所得结论表明在涂层中添加适量的纳米石墨可以提高涂层的耐磨性和耐腐蚀性能,进而可将涂层用于电力金具的表面防护。   相似文献   

8.
采用水性纳米ZrO_2溶胶与γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)为原料,通过溶胶-凝胶方法,制备了水性有机无机杂化防腐涂层。实验研究了ZrO_2/GPTMS摩尔比对涂层耐盐雾性能及电化学性能的影响。实验结果表明,涂层的耐腐蚀性能随着摩尔比的增加呈现先增强后下降的趋势,其中1∶5涂层的耐腐蚀性能最强,耐盐雾时间达到1 500h,是未涂覆涂层样板耐盐雾时间的20倍左右,电化学交流阻抗为107Ω·cm2,腐蚀电流密度为5.84×10-10 A/cm2。从1∶5涂层的SEM照片发现,涂层中纳米ZrO_2粒子分散均匀,无团聚现象。另外,TG分析表明,涂层的热稳定性能随着摩尔比的增大而增加。  相似文献   

9.
使用纳米SiO_2作为载体、8-羟基喹啉作为客体制备纳米SiO_2/8-羟基喹啉组合物,将其添加到环氧树脂中制备出装载8-羟基喹啉的纳米SiO_2/环氧涂层。对其进行盐雾和电化学阻抗谱实验,研究了装载8-羟基喹啉的纳米SiO_2/环氧涂层的耐腐蚀机理。结果表明,纳米SiO_2/8-羟基喹啉组合物提高了环氧涂层的耐腐蚀性能,添加5%(质量分数)纳米SiO_2/8-羟基喹啉组合物的环氧涂层的耐腐蚀性能较优。8-羟基喹啉从纳米SiO_2孔道中释放并渗透到涂层与钢基材的界面形成含铁的铬合物膜,阻挡了腐蚀介质的渗入,使Q235钢基体的耐腐蚀性能提高。  相似文献   

10.
通过在含氟聚丙烯酸酯(PFHI)溶液中添加固体纳米粒子,经涂覆热固化后得到了厚度约为1 μm的SiO2或TiO2纳米粒子/PFHI复合涂层,考察了SiO2或TiO2两种纳米粒子质量分数对复合涂层表面性质和防腐蚀性能的影响。利用Tafel极化曲线和电化学交流阻抗(EIS)测试研究了复合涂层在3.5wt% NaCl溶液中的电化学防腐蚀性能,并运用XPS、衰减全反射傅里叶变换红外光谱(ATR-FTIR)、TG-DTA、SEM、光学接触角(OCA)手段对复合涂层进行表征。结果表明,添加SiO2或TiO2纳米粒子均可大幅提高PFHI涂层的电化学防腐蚀性能,SiO2与PFHI质量比为0.3的SiO2/PFHI复合涂层电荷转移阻抗值Rct与PFHI涂层相比上升了2个数量级。SiO2或TiO2纳米粒子增大了涂层表面粗糙度,与PFHI紧密结合形成致密的复合涂层,提高了涂层的疏水性和致密性,从而改善了涂层的抗腐蚀性能。   相似文献   

11.
纳米SiO2添加量对紫外光固化涂料涂层性能的影响   总被引:1,自引:0,他引:1  
将纳米SiO2加入紫外光固化涂料,可以改善其涂层性能。制备了UV固化环氧丙烯酸酯/纳米SiO2复合涂料涂层,对其硬度、附着力、耐腐蚀性能及热稳定性等性能进行了研究,找出了纳米SiO2对涂层性能的影响规律。结果表明:涂层的硬度及附着力先随纳米SiO2添加量的增加而提高,添加量为3.0%时,涂层附着力达1级;添加量为4.0%时,涂层铅笔硬度达5H;添加量继续增大,涂层的硬度及附着力均下降;纳米SiO2的加入能够提高涂层的热稳定性和耐腐蚀性能,但添加量过多涂层耐腐蚀性能反而下降。  相似文献   

12.
以γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)为改性剂,对纳米氧化铝溶胶进行改性处理,随后将其分散于聚苯胺/水性环氧树脂中,再经固化剂固化,制成纳米氧化铝溶胶复合涂层。利用电化学交流阻抗、动电位极化曲线等手段分别对水性环氧涂层(epoxy)、纳米氧化铝溶胶改性水性环氧涂层(Al_2O_3/epoxy)、聚苯胺复合水性环氧涂层(PANI/epoxy)以及纳米氧化铝溶胶复合聚苯胺/水性环氧涂层(Al_2O_3/PANI/epoxy)的耐腐蚀性能和力学性能进行了研究。结果表明,Al_2O_3/PANI/epoxy涂层在3.5%NaCl溶液中浸泡15 d后的交流阻抗值为2.87×10~7Ω·cm^2,比epoxy涂层提高了3个数量级,防腐能力最强。该涂层的附着力为0级,硬度为6H,均高于其他涂层。另外,Al_2O_3/PANI/epoxy涂层的SEM照片显示,纳米Al_2O_3粒子与聚苯胺及环氧树脂粘连紧密,无明显的团聚。并发现在涂层与金属界面间出现了致密钝化层。  相似文献   

13.
以γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)为改性剂,对纳米氧化铝溶胶进行改性处理,随后将其分散于聚苯胺/水性环氧树脂中,再经固化剂固化,制成纳米氧化铝溶胶复合涂层。利用电化学交流阻抗、动电位极化曲线等手段分别对水性环氧涂层(epoxy)、纳米氧化铝溶胶改性水性环氧涂层(Al_2O_3/epoxy)、聚苯胺复合水性环氧涂层(PANI/epoxy)以及纳米氧化铝溶胶复合聚苯胺/水性环氧涂层(Al_2O_3/PANI/epoxy)的耐腐蚀性能和力学性能进行了研究。结果表明,Al_2O_3/PANI/epoxy涂层在3.5%NaCl溶液中浸泡15 d后的交流阻抗值为2.87×10~7Ω·cm~2,比epoxy涂层提高了3个数量级,防腐能力最强。该涂层的附着力为0级,硬度为6H,均高于其他涂层。另外,Al_2O_3/PANI/epoxy涂层的SEM照片显示,纳米Al_2O_3粒子与聚苯胺及环氧树脂粘连紧密,无明显的团聚。并发现在涂层与金属界面间出现了致密钝化层。  相似文献   

14.
掺杂纳米TiO_2对水性铝基金属微粉涂层的影响   总被引:1,自引:0,他引:1  
为了提高水性铝基金属微粉涂层的附着力和耐腐蚀性能,利用纳米TiO_2掺杂制备了不同纳米SiO_2含量的水性铝基金属微粉涂层。采用接触角仪测定涂料与基体Q235钢之间的接触角,采用划线划格法测定了涂层的结合强度,采用电化学极化和全浸试验法测试分析了涂层的耐腐蚀性能,采用金相显微镜和X射线衍射仪(XRD)分析了镀层的组织结构。结果表明:水性铝基金属微粉涂料中添加TiO_2后,接触角降低,使得涂层铝粉排列几乎与基体保持平行并呈现层状堆积,提高了涂层附着力、耐腐蚀性;涂料中的纳米TiO_2改善铝粉的润湿性并作为填充物填充在涂层孔隙之间,使涂层结构更加密实并且铝粉提供了物理屏蔽作用;在所研究的范围内,TiO_2最佳用量为0.4 g。  相似文献   

15.
为了提高铝合金的耐腐蚀性能、耐磨损性能及硬度,通过溶胶-凝胶反应,以纳米硅溶胶为主要原料,有机硅烷为偶联剂,制备了新型纳米SiO2防腐蚀涂料.通过浸渍-提拉法在铝合金(LY12)基体表面形成涂层,通过改变硅溶胶的含量,详细研究了此涂层的显微硬度、耐磨性能和耐腐蚀性能与硅溶胶含量的关系.结果显示,新型有机-无机杂化纳米SiO2涂层厚度为20μm时具有良好的耐腐蚀性能和耐磨性能,由此而使此杂化膜替代对环境有害的铬酸盐转化膜成为可能,并为有机-无机杂化纳化材料的应用提供了理论依据.  相似文献   

16.
采用多靶磁控共溅射技术的单靶功率可调特点,在Zr-4合金基底上,通过调节O_2流量制备出(AlCrMoNbZr)_(1-x-y)N_yO_x高熵合金涂层。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、纳米压痕仪(nanoindentation)以及电化学工作站等对不同O_2流量下制备的(AlCrMoNbZr)_(1-x-y)N_yO_x高熵合金涂层,进行了微观结构、形貌、纳米硬度以及耐腐蚀性能进行了表征与测试。结果表明,在O_2氛围作用下,涂层相结构由fcc完全转变为bcc结构;随O_2流量由0 mL/min增至15 mL/min,涂层纳米硬度由22 GPa快速降低至7 GPa;O_2流量为10 mL/min的(AlCrMoNbZr)_(1-x-y)N_yO_x高熵合金涂层表现出优异的耐腐蚀性能,其腐蚀电流密度较O_2流量为0 mL/min的(AlCrMoNbZr)N涂层降低约6倍。  相似文献   

17.
为提高1Cr18Ni9Ti不锈钢在NaCl和酸溶液环境中的耐磨损性能,利用等离子喷涂制备两种晶粒WC-10Co-4Cr涂层,研究其在3.5%(质量分数,下同)NaCl溶液与酸溶液(pH=5.0)中的耐腐蚀性能。结果表明:涂层中含有WC,W_2C,W以及η相(Co_xW_xC)。两种涂层在3.5%NaCl溶液中的腐蚀电位均高于1Cr18Ni9Ti基体的腐蚀电位。在不同温度酸溶液(pH=5.0)中,纳米WC-10Co-4Cr涂层的电位差随温度的变化最小。涂层在NaCl和酸溶液中腐蚀机制分别为:WC-10Co-4Cr涂层表面吸附氧粒子与涂层中的Co和WC在3.5%NaCl溶液中形成电偶;在酸溶液中(pH=5.0),涂层中的Co溶解形成Co2+离子,和WC相直接形成电偶腐蚀,导致涂层表面出现孤立的WC颗粒。  相似文献   

18.
曹明艳  俞爱斌  吴玉萍  乔磊  程杰 《材料导报》2021,35(10):10227-10231
石墨烯具有阻隔性好、机械强度高、比表面积大等优异的性能,被广泛应用于防腐涂料领域.本研究在聚酯树脂粉末中加入分散性较好的氧化石墨烯(GO),利用静电喷涂技术在经硅烷偶联剂预处理的6063铝合金基体上制备了不同氧化石墨烯含量的聚酯体系涂层.通过EDS能谱分析硅烷膜的成分,并通过电化学试验评价硅烷膜的腐蚀行为;采用纳米压痕仪表征涂层与基体的结合力;通过全浸泡试验和中性盐雾试验研究氧化石墨烯添加量对聚酯体系涂层耐腐蚀性能的影响.结果表明,硅烷膜的自腐蚀电压为-0.831 V,自腐蚀电流密度为5.361×10-8 A/cm2,钛锆膜的自腐蚀电压为-0.967 V,自腐蚀电流密度为8.350×10-8 A/cm2,即与钛锆膜相比,硅烷膜的自腐蚀电位高、自腐蚀电流密度小,耐腐蚀性能更优;经硅烷偶联剂预处理涂层的临界载荷值LC1为2035.71 mN,LC2为3066.66 mN,均大于经钛锆膜预处理的涂层的临界载荷值(1667.40 mN),即经硅烷偶联剂预处理的涂层与基体的结合力更强;与未添加氧化石墨烯的聚酯涂层相比,氧化石墨烯添加量为0.5%(质量分数)的聚酯涂层的失重量及失重率最小,1000 h盐雾腐蚀后涂层表面的孔隙和腐蚀坑也均减少,其耐腐蚀性能明显增强.即在聚酯树脂涂料中添加0.5%(质量分数)氧化石墨烯时,涂层的耐腐蚀性能显著提高.  相似文献   

19.
采用电弧喷涂技术在Q235钢基体上制备了约150μm厚的3Crl3涂层,并采用3种添加不同含量的纳米AlO3异丙醇溶液的有机硅树脂对其进行封孔处理,利用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射仪(XRD)对涂层的微观组织和物相组成进行分析,采用全浸泡腐蚀、乙酸盐雾腐蚀以及电化学腐蚀试验研究了未封孔及封孔涂层的耐腐蚀性能。结果表明:3Crl3涂层的物相组成主要为α—Fe(Cr)和Cr2O3涂层为典型的层状堆积结构,孔隙率约为11%;涂层封孔后的耐腐蚀性能明显优于未封孔涂层的,而且添加质量分数为6%的纳米AIz03异丙醇溶液的有机硅封孔剂对3Crl3涂层耐腐蚀性能的提高最为显著。  相似文献   

20.
李婕  孙小英  杭建忠  施利毅  程银银 《功能材料》2012,43(14):1849-1853
在采用溶胶-凝胶法合成有机-无机杂化丙烯酸树脂的基础上,研究了纳米TiO2添加量对有机-无机杂化丙烯酸复合涂层机械和耐腐蚀等性能的影响。研究表明,当纳米TiO2添加量为15%时,涂层的性能有了较大的提高,其硬度由3H提高至6H,涂层的耐盐雾时间由100h提高到500h,涂层的阻抗值也由104Ω.cm2提高至106Ω.cm2。另外,通过扫描电镜观察了复合涂层的断面,发现涂层中纳米粒子分散均匀,并且粘接紧密,形成了较为致密的复合涂层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号