首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
Objective: The aim of this study was to characterize the microstructure of microemulsion consisting of oleic acid, Cremophor RH40, ethanol, and water (Km?=?2), and investigate the influence of microstructure on the solubilization potential of the microemulsion to meloxicam (MLX).

Methods: Pseudo-ternary phase diagrams of microemulsion were constructed using the H2O titration method. The microstructures of microemulsion on dilution line N91 were identified by means of conductivity, viscosity, surface tension, and density. The freeze-fracture electron microscopy proved the specific microstructure. Differential scanning calorimetry (DSC) was used to evaluate the position of MLX in microemulsion, and the solubility of MLX in chosen microemulsions on dilution line N91 was measured.

Results: The three microstructures along dilution line N91, including water-in-oil (W/O), bicontinuous (BC), and oil-in-water (O/W) microemulsion, were characterized. The solubilization capacity of W/O microemulsion is the best, compared with the other two, whereas the O/W is the weakest. A possible structure model has been applied for the explanation of difference.

Conclusions: The solubilization capacity of microemulsion is closely related with its microstructure.  相似文献   

2.
Phyllanthin, a poorly water-soluble herbal active component from Phyllanthus amarus, exhibited a low oral bioavailability. This study aims at formulating self-microemulsifying drug delivery systems (SMEDDS) containing phyllanthin and evaluating their in-vitro and in-vivo performances. Excipient screening was carried out to select oil, surfactant and co-surfactant. Formulation development was based on pseudo-ternary phase diagrams and characteristics of resultant microemulsions. Influences of dilution, pH of media and phyllanthin content on droplet size of the resultant emulsions were studied. The optimized phyllanthin-loaded SMEDDS formulation (phy-SMEDDS) and the resultant microemulsions were characterized by viscosity, self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. In-vitro dissolution and oral bioavailability in rats of phy-SMEDDS were studied and compared with those of plain phyllanthin. Phy-SMEDDS consisted of phyllanthin/Capryol 90/Cremophor RH 40/Transcutol P (1.38:39.45:44.38:14.79) in % w/w. Phy-SMEDDS could be emulsified completely within 6?min and formed fine microemulsions, with average droplet range of 27–42?nm. Phy-SMEDDS was robust to dilution and pH of dilution media while the resultant emulsion showed no phase separation or drug precipitation after 8?h dilution. The release of phyllanthin from phy-SMEDDS capsule was significantly faster than that of plain phyllanthin capsule irrespective of pH of dissolution media. Phy-SMEDDS was found to be stable for at least 6 months under accelerated condition. Oral absorption of phyllanthin in rats was significantly enhanced by SMEDDS as compared with plain phyllanthin. Our study indicated that SMEDDS for oral delivery of phyllanthin could be an option to enhance its bioavailability.  相似文献   

3.
The objective of this work was to utilize a potential of microemulsion for the improvement in oral bioavailability of raloxifene hydrochloride, a BCS class-II drug with 2% bioavailability. Drug-loaded microemulsion was prepared by water titration method using Capmul MCM C8, Tween 20, and Polyethylene glycol 400 as oil, surfactant, and co-surfactant respectively. The pseudo-ternary phase diagram was constructed between oil and surfactants mixture to obtain appropriate components and their concentration ranges that result in large existence area of microemulsion. D-optimal mixture design was utilized as a statistical tool for optimization of microemulsion considering oil, Smix, and water as independent variables with percentage transmittance and globule size as dependent variables. The optimized formulation showed 100?±?0.1% transmittance and 17.85?±?2.78?nm globule size which was identically equal with the predicted values of dependent variables given by the design expert software. The optimized microemulsion showed pronounced enhancement in release rate compared to plain drug suspension following diffusion controlled release mechanism by the Higuchi model. The formulation showed zeta potential of value ?5.88?±?1.14?mV that imparts good stability to drug loaded microemulsion dispersion. Surface morphology study with transmission electron microscope showed discrete spherical nano sized globules with smooth surface. In-vivo pharmacokinetic study of optimized microemulsion formulation in Wistar rats showed 4.29-fold enhancements in bioavailability. Stability study showed adequate results for various parameters checked up to six months. These results reveal the potential of microemulsion for significant improvement in oral bioavailability of poorly soluble raloxifene hydrochloride.  相似文献   

4.
A novel microemulsion was prepared to increase the solubility and the in vitro transdermal delivery of poorly water‐soluble vinpocetine. The correlation between the transdermal permeation rate and structural characteristics of vinpocetine microemulsion was investigated by pulsed field gradient nuclear magnetic resonance (PFG‐NMR). For the microemulsions, oleic acid was chosen as oil phase, PEG‐8 glyceryl caprylate/caprate (Labrasol®) as surfactant (S), purified diethylene glycol monoethyl ether (Transcutol P®) as cosurfactant (CoS), and the double‐distilled water as water phase. Pseudo‐ternary phase diagrams were constructed to obtain the concentration range of each component for the microemulsion formation. The effects of various oils and different weight ratios of surfactant to cosurfactant (S/CoS) on the solubility and permeation rate of vinpocetine were investigated. Self‐diffusion coefficients were determined by PFG‐NMR in order to investigate the influence of microemulsion composition with the equal drug concentration on their transdermal delivery. Finally, the microemulsion containing 1% vinpocetine was optimized with 4% oleic acid, 20.5% Labrasol, 20.5% Transcutol P, and 55% double‐distilled water (w/w), in which drug solubility was about 3160‐fold higher compared to that in water and the apparent permeation rate across the excised rat skin was 36.4?±?2.1 µg/cm2/h. The physicochemical properties of the optimized microemulsion were examined for the pH, viscosity, refractive index, conductivity, and particle size distribution. The microemulsion was stable after storing more than 12 months at 25°C. The irritation study showed that the optimized microemulsion was a nonirritant transdermal delivery system.  相似文献   

5.
A novel microemulsion was prepared to increase the solubility and the in vitro transdermal delivery of poorly water-soluble vinpocetine. The correlation between the transdermal permeation rate and structural characteristics of vinpocetine microemulsion was investigated by pulsed field gradient nuclear magnetic resonance (PFG-NMR). For the microemulsions, oleic acid was chosen as oil phase, PEG-8 glyceryl caprylate/caprate (Labrasol®) as surfactant (S), purified diethylene glycol monoethyl ether (Transcutol P®) as cosurfactant (CoS), and the double-distilled water as water phase. Pseudo-ternary phase diagrams were constructed to obtain the concentration range of each component for the microemulsion formation. The effects of various oils and different weight ratios of surfactant to cosurfactant (S/CoS) on the solubility and permeation rate of vinpocetine were investigated. Self-diffusion coefficients were determined by PFG-NMR in order to investigate the influence of microemulsion composition with the equal drug concentration on their transdermal delivery. Finally, the microemulsion containing 1% vinpocetine was optimized with 4% oleic acid, 20.5% Labrasol, 20.5% Transcutol P, and 55% double-distilled water (w/w), in which drug solubility was about 3160-fold higher compared to that in water and the apparent permeation rate across the excised rat skin was 36.4 ± 2.1 µg/cm2/h. The physicochemical properties of the optimized microemulsion were examined for the pH, viscosity, refractive index, conductivity, and particle size distribution. The microemulsion was stable after storing more than 12 months at 25°C. The irritation study showed that the optimized microemulsion was a nonirritant transdermal delivery system.  相似文献   

6.
Oral formulations of 5-fluorouracil (5-FU) with enhanced bioavailability were developed using microemulsion as a drug carrier system. The formulations were evaluated for drug content, physicochemical characteristics such as globule size, zeta potential, viscosity, stability and permeation characteristics. Ex vivo permeation studies were performed using non-everted rat intestinal sac technique. Results of the ex vivo permeation studies revealed that from aqueous solution only 25.08% drug was permeated, whereas, the optimized microemulsion formulation showed 97.5% drug permeation in 8?h, suggesting, approximately, four times enhancement in the drug permeability. Also a 7-fold increase in the flux of drug was observed from microemulsion formulation when compared with the aqueous solution. Further, in vivo pharmacodynamic studies were carried to check the therapeutic efficacy against benzo(a)pyrene [B(a)P]-induced stomach tumors in albino mice (Balb/C strain). The treatment of mice with 5-FU and microemulsion (5-FU II), after the last dose of B(a)P i.e. during the initiation period, resulted in 25% and 67% reduction in tumor incidence, respectively suggesting significant enhancement in the bioavailability and therapeutic efficacy of 5-FU when it was formulated as a microemulsion. These promising results suggest that microemulsion formulation of 5-FU may be used for the treatment of human cancers after pharmacokinetic and clinical evaluation.  相似文献   

7.
Raloxifene hydrochloride (RLX) is a selective estrogen receptor modulator which is orally used for treatment of osteoporosis and prevention of breast cancer. The drug has low aqueous solubility and bioavailability. The aim of the present study is to formulate and characterize oil-in-water microemulsion systems for oral delivery of RLX. To enhance the drug aqueous solubility, microemulsion based on sesame oil was prepared. Sesame oil and Tween 80 were selected as the drug solvent oil and surfactant, respectively. In the first and second formulations, Edible glycerin and Span 80 were applied as co-surfactant, respectively. Pseudo-ternary phase diagrams showed that the best surfactant/co-surfactant ratios in the first and second formulations were 4:1 and 9:1, respectively. The particle size of all free drug-loaded and drug loaded samples were in the range of 31.25?±?0.3?nm and 60.9?±?0.1?nm, respectively. Electrical conductivity coefficient and refractive index of all microemulsion samples confirmed the formation of oil-in-water type of microemulsion. In vitro drug release profile showed that after 24?hours, 46% and 63% of the drug released through the first formulation in 0.1% (w/v) Tween 80 in distilled water as a release medium and phosphate buffer solution (PBS) at pH?=?5.5, respectively. These values were changed to 57% and 98% for the second formulation. Results confirmed that the proposed microemulsion system containing RLX could improve and control the drug release profile in comparison to conventional dosage form.  相似文献   

8.
Context: Atorvastatin has a limited advantage to formulate oral dosage forms.

Objective: To enhance the solubility of Atorvastatin and to design the suitable solid self-microemulsifying drug delivery systems (S-SMEDDS)

Materials and methods: The clear and transparent self-microemulsifying drug delivery system (SMEDDS) were formulated using coconut oil and isopropyl myristate as lipid phases; Tween 80 as surfactant; PEG 400 and glycerin as co-surfactant at 2:1, 3:1, 1:2 and 1:3 ratio. The pseudo ternary phase diagrams were constructed to identify the microemulsion region. The SMEDDS were evaluated for zeta potential, poly dispersity index, globule size, pH, viscosity and drug release. The solid SMEDDS were developed by employing adsorption and melt granulation methods. The S-SMEDDS were evaluated for micromeritics, morphology, solid state property, reconstitution ability, drug release and stability.

Results: The micro formulations formed with particle size of 25?nm had shown a 3-folds rise in drug release. The solid SMEDDS had reconstituted to a good microemulsion rapidly in 1–3?min, with a release of 94.62% at the end of 30?min and behaved as immediate releasing capsules. Their shelf-life was found to be 1.3 years.

Discussion: The 1:3 ratio SMEDDS had shown more drug release owing to their less particle size. The solid SMEDDS had shown an increased dissolution profiles than atorvastatin. The solid state of the drug had changed in formulation inferring their enhanced solubility.

Conclusion: The solid form of atorvastatin liquid SMEDDS had been formulated successfully with enhanced shelf life and solubility.  相似文献   

9.
Context: Bicyclol is a novel anti-hepatitis drug used for the treatment of chronic hepatitis B. Bicyclol is insoluble in water and poorly absorbed after oral administration. To date, formulation development studies to improve the in vitro dissolution profiles of bicyclol and the in vivo oral absorption characteristics have not been performed.

Objective: To overcome problems associated with the poor solubility and low oral bioavailability of bicyclol, a microemulsion system was prepared and evaluated in vitro and in vivo.

Methods: The solubility of bicyclol in various cosurfactants was determined. The optimized premicroemulsion concentrate consisted of transcutol, Tween 20, Cremophor RH 40, propylene glycol monocaprylate and bicyclol (ratio, 50:150:100:150:3). The in vitro solubility and dissolution profiles were determined, and the in vivo oral absorption pharmacokinetics were evaluated in rats (dose, equivalent to 25?mg/kg of bicyclol) in comparison with bicyclol suspended in 0.5% calcium-carboxymethylcellulose (Ca-CMC).

Results and conclusion: Of various cosurfactants tested, transcutol provided the most significantly increased solubility of bicyclol (>20?mg/ml). Bicyclol was rapidly dissolved from the premicroemulsion concentrate (approximately 80% within 10?min). Consistent with the improved in vitro profiles, the oral absorption of bicyclol was significantly increased for the premicroemulsion concentrate, i.e. AUC and Cmax were increased by 7.7- and 7.2-fold, respectively, over control values. These findings demonstrate that the microemulsion may be a useful drug delivery system to improve the oral bioavailability of bicyclol.  相似文献   

10.
Oral formulations of 5-fluorouracil (5-FU) with enhanced bioavailability were developed using microemulsion as a drug carrier system. The formulations were evaluated for drug content, physicochemical characteristics such as globule size, zeta potential, viscosity, stability and permeation characteristics. Ex vivo permeation studies were performed using non-everted rat intestinal sac technique. Results of the ex vivo permeation studies revealed that from aqueous solution only 25.08% drug was permeated, whereas, the optimized microemulsion formulation showed 97.5% drug permeation in 8?h, suggesting, approximately, four times enhancement in the drug permeability. Also a 7-fold increase in the flux of drug was observed from microemulsion formulation when compared with the aqueous solution. Further, in vivo pharmacodynamic studies were carried to check the therapeutic efficacy against benzo(a)pyrene [B(a)P]-induced stomach tumors in albino mice (Balb/C strain). The treatment of mice with 5-FU and microemulsion (5-FU II), after the last dose of B(a)P i.e. during the initiation period, resulted in 25% and 67% reduction in tumor incidence, respectively suggesting significant enhancement in the bioavailability and therapeutic efficacy of 5-FU when it was formulated as a microemulsion. These promising results suggest that microemulsion formulation of 5-FU may be used for the treatment of human cancers after pharmacokinetic and clinical evaluation.  相似文献   

11.
Genistein (GEN), is a natural dietary isoflavone, has been reported to show anticancer activities. However, its poor aqueous solubility and oral bioavailability limit its clinical application. We designed a novel genistein-loaded mixed micelles (GEN-M) system composed of Soluplus® and Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were prepared by organic solvent evaporation aimed to overcome the challenges of GEN’s poor solubility and then further improve its oral bioavailability. The optimized, spherical-shaped GEN-M was obtained at a ratio of 10:1 (Soluplus®:TPGS). The mean particle size of GEN-M was 184.7?±?2.8?nm, with a narrow polydispersity index (PDI) of 0.162?±?0.002. The zeta potential value of GEN-M was ?2.92?±?0.01?mV. The micelles solutions was transparent with blue opalescence has high the entrapment efficiency (EE) and drug loading (DL) of 97.12?±?2.11 and 3.87?±?1.26%, respectively. GEN-M was demonstrated a sustained release behavior when formed micelles shown in drug release in vitro. The solubility of GEN in water increased to 1.53?±?0.04?mg/mL after encapsulation. The permeability of GEN across a Caco-2 cell monolayer was enhanced, and the pharmacokinetics study of GEN-M showed a 2.42-fold increase in relative oral bioavailability compared with free GEN. Based on these findings, we conclude that this novel nanomicelles drug delivery system could be leveraged to deliver GEN and other hydrophobic drugs.  相似文献   

12.
Objective: The purpose of this work was to develop a new formulation to enhance the bioavailability and reduce the food effect of lurasidone using self-nanoemulsifying drug delivery systems (SNEDDSs).

Methods: The formulation of lurasidone-SNEDDS was selected by the solubility and pseudo-ternary phase diagram studies. The prepared lurasidone-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis, zeta potential and in vitro drug release. Lurasidone-SNEDDSs were administered to beagle dogs in fed and fasted state and their pharmacokinetics were compared to commercial available tablet as a control.

Results: The result showed lurasidone-SNEDDS was successfully prepared using Capmul MCM, Tween 80 and glycerol as oil phase, surfactant and co-surfactant, respectively. In vitro drug release studies indicated that the lurasidone-SNEDDS showed improved drug release profiles and the release behavior was not affected by the medium pH with total drug release of over 90% within 5?min. Pharmacokinetic study showed that the AUC(0–∞) and Cmax for lurasidone-SNEDDS are similar in the fasted and fed state, indicating essentially there is no food effect on the drug absorption.

Conclusion: It was concluded that enhanced bioavailability and no food effect of lurasidone had been achieved by using SNEDDS.  相似文献   

13.
Phenytoin (PHT) is an antiepileptic drug that was reported to exhibit high wound healing activity. Nevertheless, its limited solubility, bioavailability, and inefficient distribution during topical administration limit its use. Therefore, this study aims to develop, characterize nanostructured lipid carriers (NLCs), and evaluate their potential in topical delivery of PHT to improve the drug entrapment efficiency and sustained release. The NLCs were prepared by hot homogenization followed by ultra sonication method using 23 factorial design. NLC formulations were characterized regarding their particle size (PS), zeta potential (ZP), entrapment efficiency percent (%EE), surface morphology, physicochemical stability, and in vitro release studies. The optimized NLC (F7) was further incorporated in 1%w/v carbopol gel and then characterized for appearance, pH, viscosity, stability, and in vitro drug release. The prepared NLCs were spherical in shape and possessed an average PS of 121.4–258.2?nm, ZP of (?15.4)–(–32.2)?mV, and 55.24–88.80 %EE. Solid-state characterization revealed that the drug is dispersed in an amorphous state with hydrogen bond interaction between the drug and the NLC components. NLC formulations were found to be stable at 25?°C for six months. The stored F7-hydrogel showed insignificant changes in viscosity and drug content (p>.05) up to six?months at 25?°C that pave a way for industrial fabrication of efficient PHT products. In vitro release studies showed a sustained release from NLC up to 48?h at pH 7.4 following non-Fickian Higuchi kinetics model. These promising findings encourage the potential use of phenytoin loaded lipid nanoparticles for future topical application.  相似文献   

14.
Dapoxetine (D) suffers from poor oral bioavailability (42%) due to extensive metabolism in the liver. The aim of this study was to enhance the bioavailability of D via preparing instantly-dispersible nanocarrier powder system (IDNPs) for intranasal delivery of D. IDNPs were prepared using the thin film hydration technique, followed by freeze-drying to obtain easily reconstituted powder providing rapid and ready method of administration. The produced nanocarrier systems were evaluated for drug content, entrapment efficiency percentage, particle size, polydispersity index, zeta potential, and drug payload. The optimized nanocarrier system was morphologically evaluated via transmission electron microscopy and the optimized freeze-dried IDNPs were evaluated for ex-vivo permeation and in-vivo pharmacokinetic studies in rabbits following intranasal and oral administration. The relative bioavailability of D after intranasal administration of freeze-dried IDNPs was about 235.41% compared to its corresponding oral nanocarrier formulation. The enhanced D permeation and improved bioavailability suggest that IDNPs could be a promising model for intranasal delivery of drugs suffering from hepatic first pass effect.  相似文献   

15.
Self-microemulsifying drug delivery systems (SMEDDS) are useful to improve the bioavailability of poorly water-soluble drugs by increasing their apparent solubility through solubilization. However, very few studies, to date, have systematically examined the level of drug apparent solubility in o/w microemulsion formed by self-microemulsifying. In this study, a mixture experimental design was used to simulate the influence of the compositions on simvastatin apparent solubility quantitatively through an empirical model. The reduced cubic polynomial equation successfully modeled the evolution of simvastatin apparent solubility. The results were presented using an analysis of response surface showing a scale of possible simvastatin apparent solubility between 0.0024 ∼ 29.0 mg/mL. Moreover, this technique showed that simvastatin apparent solubility was mainly influenced by microemulsion concentration and, suggested that the drug would precipitate in the gastrointestinal tract due to dilution by gastrointestinal fluids. Furthermore, the model would help us design the formulation to maximize the drug apparent solubility and avoid precipitation of the drug.  相似文献   

16.
The present research indicated that a new self-microemulsifying drug delivery systems (SMEDDS) were used to reduce the food effect of poorly water-soluble drug cinacalcet and enhance the bioavailability in beagle dogs by oral gavage. Ethyl oleate, OP-10, and PEG-200 was selected as the oil phase, surfactant and co-surfactant of cinacalcet-SMEDDS by the solubility and phase diagram studies. Central Composite Design-Response Surface Methodology was used to determine the ratio of surfactant and co-surfactant, the amount of oil for optimizing the SMEDDS formation. The prepared formulations were further characterized by the droplet size, self-microemulsifying time, zeta potential, polydispersity index (PDI), and robustness to dilution. The in vitro release profile of cinacalcet-SMEDDS was determined in four different release medium and in fasted state and fed state of simulated gastrointestinal fluid. Cinaclcet-SMEDDS were implemented under fed and fasted state in dogs and product REGPARA® was used as a comparison to the prepared formulation in the pharmacokinetics. The result showed the components of SMEDDS, the amount of oil, the ratio of surfactant, and co-surfactant was optimized using solubility, pseudo-ternary phase diagram studies, and response surface methodology. In vitro drug release studies indicated that the cinacalcet-SMEDDS eliminated the effect of pH variability in release medium and variational gastroenteric environments with improved drug release performance. Pharmacokinetic studies revealed that the profiles of cinacalcet-SMEDDS were similar both in the fasted and fed state compared with commercial product, indicating the formulation significantly promoted the absorption, enhanced bioavailability and had no food effect essentially. It is concluded that poorly water-soluble drug cinacalcet was improved in the solubility and bioavailability by using a successful oral dosage form the SMEDDS, and eliminated food effect as well.  相似文献   

17.
Self-microemulsifying drug delivery systems (SMEDDS) are useful to improve the bioavailability of poorly water-soluble drugs by increasing their apparent solubility through solubilization. However, very few studies, to date, have systematically examined the level of drug apparent solubility in o/w microemulsion formed by self-microemulsifying. In this study, a mixture experimental design was used to simulate the influence of the compositions on simvastatin apparent solubility quantitatively through an empirical model. The reduced cubic polynomial equation successfully modeled the evolution of simvastatin apparent solubility. The results were presented using an analysis of response surface showing a scale of possible simvastatin apparent solubility between 0.0024 ~ 29.0 mg/mL. Moreover, this technique showed that simvastatin apparent solubility was mainly influenced by microemulsion concentration and, suggested that the drug would precipitate in the gastrointestinal tract due to dilution by gastrointestinal fluids. Furthermore, the model would help us design the formulation to maximize the drug apparent solubility and avoid precipitation of the drug.  相似文献   

18.
Objective: To prepare a new nanosystem of usnic acid (UA) with higher solid content and higher bioavailability.

Methods: Usnic acid nanocrystal suspensions were prepared by the wet milling method, and then the particle size distributions and zeta potential were determined with the Nano ZS90 laser diffraction particle size analyzer. The particles morphology of UA-NCS were observed by scanning electron microscopy method. In addition, solubility and dissolution of UA-NCS in water and phosphate buffer solution were determined in vitro, analyzed by the HPLC method, and then the cellular uptake and pharmacokinetic were carried out on the Caco-2 cells and rats, analyzed by the UPLC-MS/MS method.

Results: Particle size distributions and zeta potential of the UA nanocrystal suspension were 268.7?±?4.0?nm and –23.1?±?0.7?mV, respectively. About the dissolution rate of UA, nanosuspension were significantly faster and higher than common suspension in water and phosphate buffer. And in cellular uptake experiments, the ratio of the maximum amount of drug in unit protein of UA nanosuspension to common suspension was 2.8 times. In rats, oral absorption of nanocrystal UA were superior to the ordinary groups, with the 348% of the maximum concentration and 181% of the AUC after the same dosage administration.

Conclusion: The wet-milling technique was suitable for the preparation of UA nanocrystal suspension, and a new nanosystem of UA with higher solid content and higher bioavailability was achieved.  相似文献   

19.
Ambrisentan is an US FDA approved drug, it is the second oral endothelin A receptor antagonist known for the treatment of pulmonary arterial hypertension, but its oral administration is limited due to its poor water solubility. Hence, the objective of the investigation was focused on enhancement of solubility and bioavailability of ambrisentan by solid dispersion technique using natural Daucus carota extract as drug carrier. Drug carrier was evaluated for solubility, swelling index, viscosity, angle of repose, hydration capacity, and acute toxicity test (LD50). Ambrisentan was studied for the saturation solubility, phase solubility, and Gibbs free energy change. Compatibility of drug and the natural carrier was confirmed by DSC, FTIR, and XRD. Solid dispersions were evaluated for drug content, solubility, morphology, in vitro, and in vivo study. Screening of the natural carrier showed the desirable properties like water solubility, less swelling index, less viscosity, and acute toxicity study revealed no any clinical symptoms of toxicity. Drug and carrier interaction study confirmed the compatibility to consider its use in the formulation. Formed particles were found to be spherical with smooth surface. In vitro studies revealed higher drug release from the solid dispersion than that of the physical mixture. Bioavailability study confirms the increased absorption and bioavailability by oral administration of solid dispersion. Hence, it can be concluded that the natural Daucus carota extract can be the better alternative source for the preparation of solid dispersion and/or other dosage forms for improving solubility and bioavailability.  相似文献   

20.
The purpose of this study was to investigate the influence of the structure and the composition of water/Aerosol-OT (AOT)-Tween 85/isopropylmyristate (IPM) microemulsion system (WATI) on transdermal delivery of 5-fluorouracil (5-FU). The structure of WATI was characterized by measuring surface tension, density, viscosity, electric conductivity, and differential scanning calorimetry. The effect of the drug loading, water content, component compositions and the amount of mixed surfactant on permeation of 5-FU through mice skin was evaluated by using Franz-type diffusion cells. The results in vitro implied that WATI was W/O microemulsion when the water content was below 20 wt% at fixed 20 wt% of mixed surfactant at 25°C, then might be transformed to a bicontinuous structure, finally, formed O/W microemulsion with water content over 30 wt%. Increase of the drug loading can directly facilitate the penetration of the drug across the skin. Drug diffusion after 12?h from the bicontinuous microemulsion (795.1?±?22.3 µg·cm?2) would be fastest compared to that from the W/O microemulsion (650.2?±?11.7 µg·cm?2) and the O/W microemulsion (676.6?±?14.8 µg·cm?2). The combination of AOT and IPM could bring about synergistic effect on the skin enhancement, however, Tween 85 in WATI decreased the cumulative permeation amount of 5-FU. The content of mixed surfactant had no effect on the permeation of 5-FU at fixed surfactant/cosurfactant ratio (Km?=?2). Thus, the increased transdermal delivery the hydrophilic drug of 5-FU was found to be concerned with both of the structure and the composition of WATI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号