首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
当前基于深度学习的旋转机械故障诊断技术,凭借其强大的逐层加工和内置特征变换功能受到广泛关注,然而传统用于故障诊断的深度网络需要大量标签数据,且诊断结果依赖于标签的数量和准确性。为此,提出一种基于中心损失-改进卷积自编码器(center loss-improved convolutional auto-encoder, CL-ICAE)的半监督故障诊断方法。该方法首先利用连续小波变换将故障信号转换为时频图,细化故障特征表征;之后构建改进的卷积自编码器网络结构,并引入批量归一化(batch normalization, BN)和Dropout,在特征提取阶段防止过拟合;之后在分类阶段,通过将中心损失(center loss)引入Softmax损失函数,构建联合损失函数,使故障特征实现类内距离更小,特征差异更大,进一步提高分类精度。最后,将所提方法通过凯斯西储大学轴承数据集和轴承故障试验平台进行验证,结果表明在少量标签样本情况下,均可实现有效的故障诊断,提升诊断准确率。  相似文献   

2.
压缩感知可有效降低机械状态监测信号的数据存储和传输压力,而现有压缩感知方法在故障诊断的应用中存在压缩效率低下、信号重构过程缓慢等问题。本文利用自编码网络与压缩感知的对应关系,提出了一种基于深度卷积测量网络的滚动轴承压缩域故障特征提取方法。针对无噪声的故障信号样本难以获取的问题,提出一种利用故障机理构建数据集的方法,利用该仿真数据集训练得到的模型适用于不同工况下的实测轴承信号。构造网络层数由所需要的信号压缩率确定、隐含层与原信号的频率呈对应关系的深度卷积去噪自编码网络。截取训练完备的编码子网络(即深度卷积测量网络)代替传统的观测矩阵对滚动轴承振动信号进行压缩测量,实现压缩域的故障特征提取。仿真分析验证了所提数据集构造方法及压缩域特征提取方法的有效性。滚动轴承实验信号分析进一步验证了采用所提方法训练得到的深度卷积测量网络具有很好的泛化性,且能够在压缩率远低于传统压缩感知方法的情况下有效地提取轴承故障特征成分并进行故障诊断。  相似文献   

3.
随着机械设备故障诊断技术的发展,利用深度学习技术判断设备故障类型越来越引起人们重视。目前,基于注意力机制的Transformer模型有着优于卷积神经网络(convolutional neural network, CNN)的特征提取能力且在自然语言处理及计算机视觉领域都得到成功的应用。该研究提出一种用于机械设备故障诊断的Transformer方法(fault diagnosis-Transformer, FD-Transformer)。首先,对原始振动信号利用Dropout技术进行数据增强,提高模型的泛化能力;然后,利用多通道一维卷积进行数据处理并得到矩阵形式;接着,利用Dense连接的Encoder结构进行机械设备的故障特征提取;最后,利用分类模块得到故障诊断结果。分别采用变转速轴承数据和轮对轴承数据对模型进行试验验证,试验结果表明,该模型在两种数据集上均达到99%以上的故障识别率,与CNN相比可以更好地提取机械设备故障特征,有工程应用价值。  相似文献   

4.
为了对旋转机械的故障特征进行自适应提取,实现智能故障诊断,提出了一种基于批量归一化的一维卷积神经网络(convolutional neural networks, CNN)模型。由于卷积神经网络通常应用于二维图像或三维视频领域,故通过将卷积核改进为一维卷积核来实现对采集的一维振动数据的直接卷积,并且采用了批归一化层来防止过拟合,采用HZXT-008小型转子实验台采集的数据对该方法进行验证。试验结果表明该方法平均诊断准确率高达98.43%,并且与其他模型相比稳定性更高。该方法实现了大量样本下旋转机械不同故障类型的故障特征自适应提取与故障类型的准确识别。  相似文献   

5.
针对滚动轴承工作环境噪声干扰较大、模型泛化能力不足、变工况诊断较难的问题,提出了一种改进密集连接卷积网络的故障诊断方法。将采集到的滚动轴承的原始时域信号作为模型输入,不需要任何数据处理,实现端到端的特征提取和分类任务。改进密集连接卷积网络在密集块中强调信息流动,增强特征复用,通过多尺度卷积层提取特征,利用注意力机制对多尺度特征通道加权。在堆叠的密集块和池化层完成主要特征提取后,采用多分类函数实现故障诊断。选用凯斯西储大学轴承数据集验证改进密集连接卷积网络的诊断能力,结果表明,改进密集连接卷积网络在理想试验下的识别率为99.8%、在抗噪试验下的识别率为98.22%,在泛化试验下的识别率为97.19%,识别率明显高于其他深度学习模型,证明了其在滚动轴承故障诊断方面的优越性。  相似文献   

6.
现有基于深度学习网络模型的故障诊断方法往往依赖大量有标签数据进行训练,在变工况条件下,模型的诊断精度会有所下降。针对此,为提高变工况条件下的故障诊断准确率,基于域自适应理论提出一种新颖的网络模型——子域自适应对抗网络。该网络模型不仅充分利用了动态卷积的特征提取能力,同时还借鉴了生成对抗网络的博弈思想,使特征生成器和分类器对抗学习,利用每个类别的决策边界对样本进行正确分类;此外,在对抗网络中引入局部最大平均差异,考虑每个类别的细粒度信息,以此来对齐源域和目标域相应的类空间,减小网络模型在决策边界附近的分类误差,从而提高模型对故障类别的识别精度。最终,通过两个数据集对所提出的方法进行试验验证,结果表明模型在变工况条件下具有较强的泛化性能与良好的故障识别精度。  相似文献   

7.
针对旋转机械故障特征需要人工提取、复杂故障识别困难和诊断模型鲁棒性差的问题,在经典卷积神经网络Alex Net基础上,提出基于一维深度卷积神经网络的故障诊断模型,模型采用改进的一维卷积核和池化层以适应一维时域信号。相比传统智能诊断模型的人工特征提取和故障分类两阶段模式,该模型将两者合二为一:首先利用多个交替的卷积层和池化层完成原始信号自适应特征学习,然后结合全连接层实现故障诊断。通过轴承和齿轮箱健康状态监测实验表明,提出了模型可以实现高精度、稳定和快速的故障诊断,并与BP神经网络、SVM、一维Le Net5模型和经典Alex Net模型对比,证明了提出模型的优势,最后通过PCA可视化分析说明模型在特征提取上的有效性。  相似文献   

8.
目的 为解决轴承故障特征时频图像难以识别的问题,在进行时频图像训练和学习故障特征的基础上,提出新的故障诊断方法。方法 本文提出一种MDCNet网络,该网络由多尺寸卷积核模块(Multi-Size Convolution Kernel Module)、双通道池化层(Dual-Channel Pooling Layer)和跨阶段部分网络(Cross Stage Partial Network)组成。首先,将采集的振动信号经过同步压缩变换,得到信号的瞬时频率图像,然后输入神经网络获得故障诊断结果。结果 将提出的方法在西储大学轴承数据集进行预测,准确率达到了99.9%。与AlexNet、VGG–16、Resnet等传统方法进行对比试验,结果表明MDCNet方法分类精度可达99.9%,高于传统方法的分类精度(95.70%、98.51%、97.64%)。结论 结果表明,本文所提出方法的预测准确率高于其他方法的,验证了该方法在包装机械故障诊断中是可行的。  相似文献   

9.
针对滚动轴承振动信号非平稳、非线性特点以及特征提取困难问题,提出一种基于变分模态分解(VMD)与深度卷积神经网络相结合的特征提取方法并应用于滚动轴承故障诊断。利用VMD将原始振动信号分解得到若干不同频率的限带本征模态分量,通过卷积网络中的多组卷积核自动学习各模态数据的不同特征,保证了特征提取的自适应性、全面性和多样性。在特征提取的基础上,使用全连接神经网络进行故障分类与诊断。将所提方法应用于滚动轴承故障诊断,结果表明,该方法在变工况情况下能够实现滚动轴承故障类别以及损伤程度的精确判定。  相似文献   

10.
针对传统旋转机械智能识别方法需要人为提取特征及诊断精度低的问题,基于深度学习的强大学习能力,提出一种深度卷积神经网络故障诊断模型(Deep Convolutional Neural Network Fault Diagnosis Model,DCNN-FDM)用于轴心轨迹识别。该模型包括输入模块、特征提取模块及分类模块三部分。原始图像输入模型后,经过输入模块的二值化处理及最近邻插值,统一变为尺寸大小为32×32的单通道图像;经特征提取模块中两组交替的卷积层和池化层作用,得到图形特征;最后,这些特征经全连接层的扁平化处理而张成一维向量,输入到softmax分类器中进行分类。利用奇异值差分谱方法,对实测轴心轨迹进行提纯,得到4类轴心轨迹样本集用于DCNN-FDM的训练与预测。结果表明:所提模型较传统的浅层学习模型的识别效果好,可实现转子故障的精确诊断,识别率达到97.09%。最后通过全连接层的主成分可视化分析,验证了模型具备自适应特征学习能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号