首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
随着社会的迅速发展,能源短缺和环境恶化两大问题严重制约了全球社会文明发展以及经济发展。锂离子电池具有能量密度高、自放电率小、无记忆效应、循环性能好等诸多优点,广泛应用于各种电子设备、新能源汽车、储能系统等领域。锂离子电池的正极材料直接决定了电池的性能,研究正极材料的制备方法至关重要。综述了溶胶-凝胶法制备锂离子电池正极材料的研究进展以及溶胶-凝胶法改性正极材料的制备,并对溶胶-凝胶法制备锂离子电池正极材料未来的研究方向进行展望。  相似文献   

2.
综述了近年来纳米技术在锂电池正极材料中应用的最新进展,重点阐述了纳米过渡金属嵌锂化学物、纳米金属氧化物以及其它纳米正极材料的制备及其电化学性能.电极材料的纳米化对改善锂离子电池的电化学性能有着显著的意义,指出了各种纳米正极材料在应用中存在的问题.  相似文献   

3.
全固态薄膜锂离子电池正极材料研究进展   总被引:1,自引:0,他引:1  
全固态薄膜锂离子电池是锂离子电池的最新研究领域,正极材料的薄膜化成为锂离子电池的重要组成部分和研究热点.主要综述了LiCoO2、LiNiO2、LiMn2O4、v2O5、金属磷酸盐化合物等薄膜正极材料近几年来在材料改性、制备工艺等方面的研究状况,并展望了其发展趋势.  相似文献   

4.
综述了近年来锂离子电池正极材料的研究情况.介绍了几种主要的锂离子二次电池正极材料,包括锂钴氧化物、锂镍氧化物、锂锰氧化物的结构、制备、电化学性能及改性方法等.并通过水热法合成获得均匀无杂相的、α-NaFeO2层状结构的HT-LiCoO2超细粉末.  相似文献   

5.
尖晶石LiNi0.5Mn1.5O4锂离子电池正极材料具有高的放电电压,高的能量密度,优异的倍率性能和循环性能的优势,极有可能成为下一代的锂离子电池正极材料。阐述了锂离子电池正极材料5V尖晶石LiNi0.5Mn1.5O4的结构、主要制备方法,介绍了离子掺杂、表面包覆等提高材料结构稳定性,改善高温高倍率循环性能的改进手段,并简述了此材料的产业化现状,展望了发展前景。  相似文献   

6.
锂离子电池聚阴离子型硅酸盐正极材料的研究进展   总被引:1,自引:0,他引:1  
综述了硅酸盐正极材料的设计、特性、制备及电化学性能,介绍了基于密度泛函理论的量子化学计算在锂离子电池材料设计中的方法和理论,认为进一步开展Li2MSiO4及其复合材料的理论和实验研究可以获得性能优异的高容量正极材料.  相似文献   

7.
锂离子电池磷酸铁锂(LiFePO4)正极材料具有比能量大、工作电压高、循环寿命长、无记忆效应、对环境友好等突出优点,但LiFePO4本身低的电子电导率和锂离子扩散系数阻碍了其在生产生活中的大规模应用,而制备纳米LiFePO4作为电极材料并进行改性可以改善其电化学性能。本文主要综述了国内外合成纳米LiFePO4的不同方法及其电化学性能,并介绍了当前LiFePO4发展所遇到的问题,指出了锂离子电池今后发展的主要方向。  相似文献   

8.
简述了核壳结构材料的特点、性能和制备方法,阐述了核壳结构锂离子电池正极材料对其放电比容量、循环性能的改善,综述了锂离子电池核壳正极材料的制备方法、结构特征和电化学性能等方面的最新研究进展,探讨了该类材料的优缺点并展望了其应用前景.  相似文献   

9.
硅酸盐体系锂离子电池材料是新一代高性能锂离子电池正极材料选择之一,是值得研发的先进电池材料。综述了锂离子电池Li2MSiO4(M=Fe,Mn)系列正极材料的国内外最新研究进展。重点对该系列正极材料的合成方法、结构特点及电化学性能进行了总结和探讨。  相似文献   

10.
控制结晶法制备球形锂离子电池正极材料的研究进展   总被引:24,自引:0,他引:24  
球形材料具有堆积密度大、体积比容量高、加工性能好等突出优点. 球形化是锂离子电池正极材料的重要发展方向. 控制结晶法是制备球形材料的理想方法. 本文介绍了控制结晶法的原理, 综述了采用控制结晶法制备球形锂离子电池正极材料---LiCoO2、LiNi0.8Co0.2O2、LiMn2O4、LiNi1/3Co1/3Mn1/3O2、LiFePO4的研究和发展, 并对球形材料在锂离子电池中的应用前景进行了分析.  相似文献   

11.
LiFePO_4的研究进展、问题及解决方法   总被引:1,自引:0,他引:1  
具有橄榄石结构的LiFePO4作为锂离子动力电池的正极材料具有成本低、无毒、原材料来源丰富和良好的高温电化学能力而成为当前研究热点之一.综述了近期国内外锂离子电池正极材料LiFePO4的研究状况,分析和总结了LiFePO4正极材料在结构和性能方面存在的缺陷以及所采取的改进途径,并对该材料的深入研究提出了一些新思路.通过表面包覆、粒子掺杂和制备高密度前驱体等方法的综合应用来合成高密度的LiFePO4复合材料是将来研究的重要方向.  相似文献   

12.
由于磷酸铁锂正极材料具有特殊的空间架构以及优越的安全性能、环保性能和其他锂离子电池正极材料无法超越的循环性能,使得其在储能电池和动力电池产业中快速发展。通过配制爆炸合成专用炸药制备了纳米级磷酸铁锂颗粒粉体,分析粉体材料检测结果发现:合成的纳米磷酸铁锂粉体材料的热稳定性比较高,在高温条件下粉体样品的质量维持在一个不变的数值范围内;另外根据扫描得到的伏安曲线发现粉体材料的循环重现性较好,并且材料的脱锂性能与嵌锂性能也具有很好的可逆性。  相似文献   

13.
锂离子二次电池正极材料氧化锰锂的研究进展   总被引:20,自引:1,他引:19  
综述了最近几年对于锂离子二次电池正极材料氧化锰锂的研究。研究的氧化锰锂材料主要有尖晶石结构的LiMN2O4、Li4Mn5O9和Li4Mn5O12以及层状结构的LiMnO2。对于LiMN2O4,通过引入适当的杂原子和采用新的溶胶-凝胶法制备复相 可以有效地克服Jahn-Teller效应所造成的容量衰减现象。Li4Mn5O9display structure  相似文献   

14.
锂离子电池正极材料的研究进展   总被引:12,自引:0,他引:12  
综述了近年来发展起来的一些锂离子电池正极材料 ,主要包括嵌锂的层状LixMO2 结构和尖晶石型LixM2 O4 结构的过渡金属氧化物 (M =Co、Ni、Mn、Cr等 )。重点介绍了锂钴氧化物、锂镍氧化物、锂锰氧化物的性能、制备、结构以及改性方法等 ,并对纳米电极材料和其它正极材料的发展情况作了简介  相似文献   

15.
尖晶石LiMn2O4表面包覆MgO及其性能   总被引:1,自引:0,他引:1  
Mn^2 在电解液中的溶解是引起LiMn2O4正极材料性能恶化的重要原因。用沉淀法在LiMn2O4表面包覆一层Mg(OH)2,再进行热地理,制备由表面包覆MgO的LiMn2O4。用X光电子能谱、扫播电镜和X射线衍射对包覆前后的LiMn2O4的结构进行了表征。充放电测试结果表明.经表面修饰处理后LiMn2O4的循环及高温性能明显改善。研究结果表明表面修饰北理可以抑制正极材料和电解液之间的相互作用.是改善锂离子二次电池正极材料性能的有效途径。  相似文献   

16.
尖晶石LiMn2O4是最有希望替代LiCoO2的新一代锂离子电池的正极材料。本文对锂离子电池的工作原理和3种正极材料作了简要介绍。综述了近年来LiMn2O4制备技术的研究进展,并对其今后的发展进行了展望。  相似文献   

17.
李军  周燕  靳世东  郑育英 《材料导报》2011,25(9):51-53,67
球形化可以提高锂离子正极材料的压实密度、体积比容量并改善其加工性能和极片的质量。简要介绍了球形材料的特点,综述了球形LiCoO2、LiNixM1-xO2、LiMn2O4、LiFePO4等的制备及其性能,展望了球形正极材料的应用前景。  相似文献   

18.
提出了一种二次掺碳制备锂离子电池正极材料LiFePO4/C复合材料的合成方法。实验结果表明不同阶段掺碳对合成LiFePO4/C复合材料的晶型没有影响,但对其电化学性能影响明显,二次掺碳能有效地提高容量和改善材料的稳定性;当蔗糖二次加入量为碳与磷酸铁锂质量比为3%(质量分数)时,样品颗粒细小且均匀,同时电化学性能最好,在0.2C倍率下首次放电比容量为161.19mA.h/g,循环20次后仍保持在153.68mA.h/g。  相似文献   

19.
Deng  Sixu  Wang  Hao  Liu  Hao  Liu  Jingbing  Yan  Hui 《纳微快报(英文)》2014,6(3):209-226
Nano-Micro Letters - Olivine lithium iron phosphate (LiFePO4) is considered as a promising cathode material for high power-density lithium ion battery due to its high capacity, long cycle life,...  相似文献   

20.
镍系锂离子电池正极材料的合成工艺及改性研究   总被引:1,自引:1,他引:1  
常照荣  齐霞  吴锋  孙东  苗旺 《材料导报》2006,20(5):92-96
通过分析镍系锂离子电池正极材料LiNiO2的结构特点和现阶段存在的问题,综述了近几年从合成方法和元素掺杂、表面修饰方面对镍系正极材料进行研究的概况,并从实用化角度讨论了其发展的方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号