首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
TiO2 thin films on soda lime glass were prepared by the sol-gel method and spin coating process using TiCl4 as a precursor. The AFM images indicate that the surface morphology of the films is granular with 72 nm particle size. The roughness and thickness of the films are about 3 nm and 140 nm, respectively. The XRD spectrum shows polycrystalline anatase phase without any considerable impurity phase. The UV-vis spectroscopy of the films show 80-90% transmission in the visible region. The absorption edge is at 370 nm, which corresponds to 3.3 eV energy band gap. The films have a high superhydrophilicity character after being exposed to UV illumination for about 10 min. The surfaces, which were synthesized by this method, can retain their superhydrophilicity property for at least 24 h. Our results are consistent with the idea that UV-induced wetting of TiO2 surface is caused by the removal of hydrophobic layers of hydrocarbons by TiO2-mediated photooxidation, which leads to the attractive interaction of water with clean TiO2 surface. TiO2 thin films on Si(1 1 1), Si(1 0 0), and quartz substrates need less time than glass and polycrystalline Si substrates to be converted to superhydrophilic surface.  相似文献   

2.
High density TiO2 nanotube film with hexagonal shape and narrow size distribution was fabricated by templating ZnO nanorod array film and sol-gel process. Well-aligned ZnO nanorod array films obtained by aqueous solution method were used as template to synthesize ZnO/TiO2 core-shell structure through sol-gel process. Subsequently, TiO2 nanotube array films survived by removing the ZnO nanorod cores using wet-chemical etching. Polycrystalline anatase TiO2 nanotube films were ∼ 1.5 μm long and ∼ 100 nm in inter diameter with a wall thickness of ∼ 10 nm.  相似文献   

3.
Influence of both calcination ambient and film thickness on the optical and structural properties of sol-gel derived TiO2 thin films have been studied. X-ray diffraction results show that prepared films are in an anatase form of TiO2. Films calcined in argon or in low vacuum (∼2 × 10−1 mbar) are found to be smaller in crystallite size, more transparent at low wavelength region of ∼300-450 nm, denser, have higher refractive index and band gap energy compared to air-calcined films. Scanning electron microscopic study reveals that surfaces of TiO2 films calcined in argon or in low vacuum are formed by densely packed nano-sized particulates. Presence of voids and signs of agglomeration can be seen clearly in the surface microstructure of air-calcined films. In the thickness range ∼200-300 nm, band gap energy and crystallite size of TiO2 films remain practically unaffected with film thickness but refractive index of thinner film is found to be marginally higher than that of thicker film. In this work, it has been shown that apart from temperature and soaking time, partial pressure of oxygen of the ambient is also an important parameter by which crystallite size, microstructure and optical properties of the TiO2 films may be tailored during calcination period.  相似文献   

4.
Large area Ba1 − xSrxTiO3 (BST) thin films with x = 0.4 or x = 0.5 were deposited on 75 mm diameter Si wafers in a pulsed laser deposition (PLD) chamber enabling full-wafer device fabrication using standard lithography. The deposition conditions were re-optimized for large PLD chambers to obtain uniform film thickness, grain size, crystal structure, orientation, and dielectric properties of BST films. X-ray diffraction and microstructural analyses on the BST films grown on Pt/Au/Ti electrodes deposited on SiO2/Si wafers revealed films with (110) preferred orientation with a grain size < 100 nm. An area map of the thickness and crystal orientation of a BST film deposited on SiO2/Si wafer also showed (110) preferred orientation with a film thickness variation < 6%. Large area BST films were found to have a high dielectric tunability of 76% at an electric field of 400 kV/cm and dielectric loss tangent below 0.03 at microwave frequencies up to 20 GHz and a commutation quality factor of ~ 4200.  相似文献   

5.
Herein, we report a photoinduced transition of hydrophobicity to high hydrophilicity of TiO2 nanodot films in applications of cell sheet engineering. A phase-separation-induced self-assembly process was adopted to prepare a TiO2 nanodot gel film on a substrate. Subsequently, a hydrothermal treatment (with ethanol/water at 140 °C for 2 h) was used to convert the nanodot gel film to TiO2 nanodot solid film. The resulting TiO2 dots were amorphous with adjustable size and density. The amorphous TiO2 nanodot film showed a conversion from a good hydrophobic surface, with a water contact angle (WCA) of 67.6 ± 2.0°, to a highly hydrophilic one, with a WCA of 5.3 ± 2.0° (i.e. almost superhydrophilic) after UV irradiation. A good reversibility was also observed.  相似文献   

6.
In this study, the influence of post deposition annealing steps (PDA) on the electrical resistivity of evaporated titanium/platinum thin films on thermally oxidised silicon is investigated. Varying parameters are the impact of thermal loading with maximum temperatures up to TPDA = 700 °C and the platinum top layer thickness ranging from 24 nm to 105 nm. The titanium based adhesive film thickness is fixed to 10 nm. Up to post deposition annealing temperatures of TPDA = 450 °C, the film resistivity is linearly correlated with the reciprocal value of the platinum film thickness according to the size effect. Modifications in the intrinsic film stress strongly influence the electrical material parameter in this temperature regime. At TPDA > 600 °C, diffusion of titanium into the platinum top layer and its plastic deformation dominate the electrical behaviour, both causing an increase in film resistivity above average.  相似文献   

7.
TiO2-polydimethylsiloxane (TiO2-PDMS) composite films are prepared using the sol–gel method from a Ti(OBu)4–benzoylacetone solution containing PDMS. The prepared films are cured by irradiation with ultraviolet (UV) light. Structural changes in the films after UV irradiation are confirmed by UV–vis absorption experiments, which show that an absorption band characteristic of the benzoylacetonate chelate rings disappears. This finding is ascribed to structural changes associated with the dissociation of the chelate rings. The IR spectra of the thin films exhibit a broad absorption band after UV irradiation, indicating that a Ti–O–Ti network forms in the thin film. Contact angles are measured for the TiO2-PDMS thin films, showing wettability conversion from hydrophobic to superhydrophilic states by irradiation with oxygen plasma for 1 s. This phenomenon is explained by XPS experiments which reveal that the number of carbon atoms decreases, whereas the number of oxygen atoms increases on the surface of the TiO2-PDMS composite films. Finally, hydrophobic–superhydrophilic patterns are fabricated based on a patterned TiO2-PDMS composite film. The film displays a rapid change to superhydrophilicity over the whole film surface upon plasma irradiation for 1 s, which means that the wettability patterns are rapidly erasable.  相似文献   

8.
Titanium dioxide (TiO2) thin films were prepared on Galvanized Iron (GI) substrate by plasma-enhanced atomic layer deposition (PE-ALD) using tetrakis-dimethylamido titanium and O2 plasma to investigate the photocatalytic activities. The PE-ALD TiO2 thin films exhibited relatively high growth rate and the crystal structures of TiO2 thin films depended on the growth temperatures. TiO2 thin films deposited at 200 °C have amorphous phase, whereas those with anatase phase and bandgap energy about 3.2 eV were deposited at growth temperature of 250 °C and 300 °C. From contact angles measurement of water droplet, TiO2 thin films with anatase phase and Activ™ glass exhibited superhydrophilic surfaces after UV light exposure. And from photo-induced degradation test of organic solution, anatase TiO2 thin films and Activ™ glass decomposed organic solution under UV illumination. The anatase TiO2 thin film on GI substrate showed higher photocatalytic efficiency than Activ™ glass after 5 h UV light exposure. Thus, we suggest that the anatase phase in TiO2 thin film contributes to both superhydrophilicity and photocatalytic decomposition of 4-chlorophenol solution and anatase TiO2 thin films are suitable for self-cleaning applications.  相似文献   

9.
Titanium oxide thin films were deposited by DC reactive magnetron sputtering on ZnO (80 nm thickness)/soda-lime glass and SiO2 substrates at different gas pressures. The post annealing on the deposited films was performed at 400 °C in air atmosphere. The results of X-ray diffraction (XRD) showed that the films had anatase phase after annealing at 400 °C. The structure and morphology of deposited layers were evaluated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface grain size and roughness of TiO2 thin films after annealing were around 10-15 nm and 2-8 nm, respectively. The optical transmittance of the films was measured using ultraviolet-visible light (UV-vis) spectrophotometer and photocatalytic activities of the samples were evaluated by the degradation of Methylene Blue (MB) dye. Using ZnO thin film as buffer layer, the photocatalytic properties of TiO2 films were improved.  相似文献   

10.
TiO2 thin films were deposited on polycarbonate (PC) substrate by ion beam assisted evaporation. The grain size increased with the ion anode voltage and film thickness. The TiO2 thin films had an amorphous structure. Moiré deflectometry was used to measure the nonlinear refractive indices of TiO2 thin films on PC substrates. The nonlinear refractive index was measured to be of the order of 10− 8 cm2 W− 1 and a change in refractive index was of the order of 10− 5. Dense TiO2 films exhibited high linear refractive indices, red-shift of the optical absorbance, and absorbance in the near-IR region.  相似文献   

11.
Variable angle spectrometric ellipsometry at room temperature is used to determine thin film parameters of substrates used in liquid crystal displays. These substrates consist of sequential thin films of polyimide (PI), on indium tin oxide (ITO),on SiO2 deposited on a glass backing approximately 1.1 mm thick. These films were studied by sequentially examining more complex systems of films (SiO2, SiO2-ITO, SiO2-ITO-PI). The SiO2 layer appears to be optically uniform and flat. The ITO film is difficult to characterize. When this surface film's lower surface is SiO2 and upper surface is an air-ITO-interface it is found that including surface roughness and variation of the optical properties with ITO thickness in the model improved the fit; suggesting that both phenomena exist in the ITO films. However, the surface roughness and graded nature of optical properties could be not determinable by ellipsometry when the ITO is coated with a polyimide film. The PI films are ellipsometrically flat and over the wavelength range from 500 to 1400 nm the real refractive index of polyimide films varying in thickness between 25 and 80 nm is well modeled by a two-term Cauchy model with no absorption. The ellipsometric thickness of the ITO layer is the same as the profilometric thickness; however, the ellipsometric thickness of the polyimide layers is roughly 10 nm larger than that obtained from the profilometer. These final observations are consistent with the literature.  相似文献   

12.
Wenli Yang 《Thin solid films》2006,515(4):1708-1713
Amorphous TiO2 thin films were formed by plasma-enhanced chemical vapor deposition (PECVD) from mixtures of titanium IV isopropoxide (Ti(O-i-C3H7)4) and oxygen. The deposition rate was found to be weakly activated, with an apparent activation energy of 4.5 kJ/mol. The deposition rate increased with equivalence ratio and decreased with plasma power. This dependence on atomic oxygen density was consistent with behavior observed in other metal oxide PECVD systems. Metal-insulator-silicon devices were fabricated, and characterized using capacitance-voltage measurements. The apparent dielectric constant of the TiO2 thin films increased from 15 to 82 with film thickness. The observed variations were consistent with the formation of an interfacial SiO2 layer. Assuming that a TiO2/SiO2 bilayer behaves as two capacitors in series, an intrinsic TiO2 dielectric constant of 82 ± 10 and an interfacial SiO2 layer thickness of 3 ± 1 nm were extracted from electrical measurements.  相似文献   

13.
Tin-doped indium oxide (ITO) films were deposited by RF magnetron sputtering on TiO2-coated glass substrates (the TiO2 layer is usually called seed layer). The properties of ITO films prepared at a substrate temperature of 300 °C on bare and TiO2-coated glass substrates have been analyzed by using X-ray diffraction, atomic force microscope, optical and electrical measurements. Comparing with single layer ITO film, the ITO film with a TiO2 seed layer of 2 nm has a remarkable 41.2% decrease in resistivity and similar optical transmittance. The glass/TiO2 (2 nm)/ITO film achieved shows a resistivity of 3.37 × 10−4 Ω cm and an average transmittance of 93.1% in the visible range. The glass/TiO2 may be a better substrate compared with bare glass for depositing high quality ITO films.  相似文献   

14.
Highly ordered mesoporous titanium dioxide (titania, TiO2) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic TiO2 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO2-buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk TiO2 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase TiO2 (~ 3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.  相似文献   

15.
Ni films were deposited on anodic aluminum oxide (AAO) and SiO2/Si(100) substrates at 300 K by direct current magnetron sputtering with the oblique target. The film thickness was 80 nm, 160 nm and 260 nm. The films grown on AAO substrates have a network structure while those deposited on SiO2/Si(100) substrates are continuous. The network film consists of granules and is formed by granule connection. The granule consists of many fine grains. The granule size increases with increasing film thickness. The 80 nm-thick network film has a honeycomb-like structure. The continuous films grow with a columnar structure and the transverse size of columnar grains increases with increasing film thickness. All the network films show a Ni(111) diffraction peak while the 160 nm- and 260 nm-thick continuous films exhibit the Ni(111) and Ni(200) diffraction peaks. The network films have higher coercivity and residual magnetization ratio compared with the continuous films. The coercivity and the residual magnetization ratio increase with increasing film thickness for the network films while they are almost independent of the film thickness for the continuous films. A temperature dependence of the resistance within 5-200 K reveals that the 80 nm-thick network Ni film exhibits markedly a minimal resistance at about 40 K. A logarithmic temperature dependence of the conductance is verified at temperatures below 40 K. The temperature coefficient of resistance is smallest for the 80 nm-thick network film and is largest for the 260 nm-thick continuous film.  相似文献   

16.
Transparent conductive oxide films are suitable sensitive layers for gas sensors and biosensors, provided that their intrinsic properties are controlled, notably considering their thickness dependence. The present paper reports on a study of the variation of some physical properties of polycrystalline Sb doped SnO2 films according to the film thickness. Films were deposited onto Si and glass substrates by aerosol pyrolysis. Their thickness was varied in a range of 20-280 nm. The electrical resistivity, the roughness, the optical constant, the microstructure and the texture were investigated. Correlated evolutions of the resistivity and the surface roughness are found in relation with the evolutions of both the microstructure and the texture. Two main successive growth steps were evidenced which are delimited by a critical film thickness. Below this thickness of approximately 100-120 nm, a strong dependence of physical properties with the thickness is evidenced whereas for thicker films no significant change is evidenced. A two-step growth model is proposed to explain this behaviour. This mechanism growth is to be considered in view of the integration of SnO2 films as sensitive layers in biosensors. Notably, in the case of biosensors based on the label-free electrochemical detection of biomolecules, it is recommended to use films with thicknesses ranging above the critical thickness value of 100-120 nm in order to obtain optimized, reproducible and comparable responses of biosensors.  相似文献   

17.
Transparent and conductive Al-doped ZnO (AZO) thin films were deposited on substrates including alkali-free glass, quartz glass, Si, and SiO2 buffer layer on alkali-free glass by using radio frequency magnetron sputtering. The effects of different substrates on the structural, electrical and optical properties of the AZO films were investigated. It was found that the crystal structures were remarkably influenced by the type of the substrates due to their different thermal expansion coefficients, lattice mismatch and flatness. The AZO film (100 nm in thickness) deposited on the quartz glass exhibited the best crystallinity, followed sequentially by those deposited on the Si, the SiO2 buffer layer, and the alkali-free glass. The film deposited on the quartz glass showed the lowest resistivity of 5.14 × 10− 4 Ω cm among all the films, a carrier concentration of 1.97 × 1021 cm− 3 and a Hall mobility of 6.14 cm2/v·s. The average transmittance of this film was above 90% in the visible light spectrum range. Investigation into the thickness-dependence of the AZO films revealed that the crystallinity was improved with increasing thickness and decreasing surface roughness, accompanied with a decrease in the film resistivity.  相似文献   

18.
Nanocrystalline TiO2 films were deposited on a conducting glass substrate by the electrophoretic deposition technique. It was found that the thickness of TiO2 film increased proportionally with an increase in deposition time and deposition voltage. However, as the deposition duration or deposition voltage increased, the film surface was more discontinuous, and microcracks became more evident. The characteristic of the dye-sensitized solar cell using TiO2 film as a working electrode was analyzed. The results of the energy conversion efficiency and the photocurrent density exhibited a relationship dependent on the TiO2 thickness. Curve fitting of energy conversion efficiency vs. TiO2 thickness revealed the optimum solar cell efficiency ~ 2.8% at the film thickness of ~ 14 μm.  相似文献   

19.
Anatase (TiO2) thin films were grown by non-aqueous sol-gel dip-coating using titanium (IV) n-butoxide as precursor and 1-butanol as solvent. High withdrawal speed of 4.7 mm/s in dip-coating resulted in defect free films of 100 nm average film thickness after subsequent heat treatments. According to scanning electron microscope and X-ray diffraction measurements, the films consisted of nanocrystalline anatase with 30 nm mean crystallite size. Refractive index n(λ) and extinction coefficient k(λ) were determined over the wavelength range from 200 to 1650 nm. The optical band gap of the film material was approximately 3.2 eV. The results showed very similar optical characteristics to those that are accomplished with chemically more reactive aqueous sol-gel processes. Furthermore, it was found that in addition to porosity, coordination number of Ti atoms to nearest oxygen neighbors is likely to have a significant role in explaining differences of optical properties between bulk anatase and thin film materials of the present work.  相似文献   

20.
Q.G. Chi 《Thin solid films》2009,517(17):4826-4829
Lanthanum-and calcium-modified PbTiO3 (PLCT) ferroelectric thin films were successfully prepared on Pt(111)/Ti/SiO2/Si substrates by pulsed laser deposition. Influence of TiOx seed layer on texture and electric properties of PLCT films was investigated. It is found the PLCT films without seed layer exhibited highly (100)-textured, while using about 9 nm TiOx as seed layer lead to highly (301)-textured. The PLCT film with TiOx seed layer possess higher remnant polarization (Pr = 26 µC/cm2), better pyroelectric coefficient and figure of merit at room temperature (p = 370 µC/m2k, Fd = 190 × 10− 5 Pa− 1/2) than that of film without seed layer. The mechanism of the enhanced electric properties was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号