首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
磁流变阻尼器简化力学模型研究   总被引:3,自引:0,他引:3  
方子帆  邓兆祥 《工程力学》2007,24(11):32-35,46
基于磁流变液体在不同磁场和剪切率下流变特性和磁流变阻尼器在混合模式下的力学原理,推导出包含四个待定系数的磁流变阻尼器简化力学模型。利用MTS8701系统测试的磁流变阻尼器的阻尼力与活塞杆运动速度及励磁电流的试验数据,对磁流变阻尼器简化力学模型进行了系数辩识。用磁流变阻尼器的电压驱动和电磁系统动态响应时间加上磁流变液体成链时间作为磁流变阻尼器的响应时间,建立了带时滞因子的磁流变阻尼器简化力学模型。试验与仿真分析结果表明,该简化力学模型能反映其基本力学特性。  相似文献   

2.
为了提高磁流变座椅悬架控制系统的实时性、高效性、简洁性,减小车辆座椅悬架的振动,选用LMS自适应控制算法,将阻尼器的模型与控制算法相结合,并增加道路谱下的实验验证.先对座椅用磁流变阻尼器进行阻尼特性试验,并在此基础上建立阻尼器的双曲正切模型,建立简化的座椅悬架单自由度系统模型,在阻尼器模型的基础上设计了适合磁流变阻尼器座椅悬架的LMS自适应控制算法,并在道路谱下进行了仿真与实验.结果表明,采用LMS自适应控制后的磁流变阻尼器半主动悬架系统相对于被动悬架,仿真时座椅加权加速度均方根值减小35.7%,实验时座椅加权加速度均方根值减小32.8%,算法可有效抑制悬架振动,且控制过程简单,具有较好的实际应用价值.  相似文献   

3.
杨杨  徐赵东 《工程力学》2022,39(10):173-181
为了研究磁性颗粒在磁场作用下的不均匀分布对磁流变液力学性能的影响,通过卡方分布来模拟磁性颗粒的间距分布,对现有的磁流变液微观力学模型进行修正,并通过磁流变阻尼器的力学性能试验验证了模型的有效性。在磁流变液双链微观力学模型的基础上,修正相邻磁性颗粒的间距完全相等且不随磁感应强度而变化的假设,采用卡方分布来表征磁性颗粒间距的不均匀分布,并引入分布参数来描述磁性颗粒间距随磁感应强度的变化关系,推导了考虑磁性颗粒不均匀分布的磁流变液修正微观力学模型;基于修正的微观力学模型,分析了分布参数对磁流变液剪切屈服应力的影响;将该文提出的磁流变液修正微观力学模型带入到磁流变阻尼器的准静态模型中,可以得到不同电流下的阻尼器最大出力,并与磁流变阻尼器力学性能试验数据进行对比来验证所提模型的有效性。结果表明,考虑了磁性颗粒不均匀分布的磁流变液修正微观力学模型可以更加精确地预测磁流变液在不同磁感应强度下的剪切屈服应力,尤其是在低磁感应强度情况下可以改善现有微观力学模型放大了磁流变液剪切屈服应力的缺点。  相似文献   

4.
火炮磁流变阻尼器工作在高速高冲击条件下,其动力特性及其力学模型与常用的磁流变阻尼器存在较大不同。针对某型号火炮设计了反后坐用磁流变阻尼器,并进行了5种不同电流下的动态测试,验证了该阻尼器对反后坐控制的可行性。由试验分析得,火炮磁流变阻尼器的输出力不仅与控制电流和后坐速度有关,还与高冲击条件下的磁流变效应的复杂性、惯性力、腔体内气体压力等因素有关。提出了用改进的多项式模型描述火炮磁流变阻尼器,该模型具有形式简洁,易于求解逆模型,便于实时控制等优点。通过参数辨识后的模型能较好的描述火炮反后坐过程中阻尼器的输出力。  相似文献   

5.
多环形槽结构磁流变阻尼器的实验建模   总被引:1,自引:0,他引:1  
祝世兴  王立克  田静  麻力 《功能材料》2006,37(5):837-839
对自行设计的、多环形槽结构磁流变阻尼器进行了理论分析与实验建模.该阻尼器的主要特点是在阻尼活塞周向表面上开有若干个矩形齿状环形槽,并且通过磁路设计,使流经阻尼通道处的磁流变液流动方向与其作用的磁力线方向垂直,用以增大阻尼力和阻尼力变化范围.然后从磁流变液的流变特性、电磁学的角度出发,利用修正了的非牛顿流体宾汉模型、结合实验数据,建立了该阻尼器的力学模型.利用该模型绘制和分析了外加磁场(通过施加电流实现)和阻尼力之间关系曲线,与实验结果较好吻合,从而证明了模型的正确性,为磁流变液阻尼器设计和性能预测提供了参考.  相似文献   

6.
郑玲  周忠永 《振动与冲击》2011,30(10):25-29
磁流变阻尼器具有很强的非线性特性,准确描述磁流变阻尼器输入、输出之间的非线性关系,对提高磁流变减振系统的控制精度,保持控制系统稳定性,具有重要意义。针对经典参数化建模存在的大量参数辨识和计算复杂问题,采用自适应神经模糊系统理论,根据磁流变阻尼器实验模型,建立了磁流变阻尼器非参数化模型。它包括两个自适应神经模糊子系统,分别对特定电压下,磁流变阻尼器输入、输出关系以及电压变化导致的阻尼力输出等级进行描述。研究表明:基于自适应神经模糊理论的磁流变阻尼器非参数化模型,能以很高的精度逼近磁流变阻尼器实验模型,真实反映磁流变阻尼器的非线性特性。由于非参数化模型的计算工作量大大减少,有利于实现磁流变减振系统的精确与快速控制。  相似文献   

7.
司鹄  李晓红 《功能材料》2006,37(5):831-832,836
磁流变阻尼器是一种应用广泛的磁流变器件,其利用磁流变液独特的磁流变效应的工作.然而,磁流变体阻尼器设计中,一般地将磁流变液作为粘性流体建立流动的力学模型,进行流动分析以及参数设计,这样设计的结果与实测出现了较大的误差.本文将磁流变体作为一种粘塑性流体,建立了描述磁流变液流动的力学场和电磁场耦合的流体动力学基本方程组,分析研究了磁流变阻尼器沿狭长管道流动的特征,为磁流变阻尼器的设计提供了可靠的理论基础.  相似文献   

8.
磁流变式调谐液柱阻尼器对结构风致抖振控制研究   总被引:1,自引:0,他引:1  
磁流变式调谐液柱阻尼器(MR-TLCD)是由调谐液柱阻尼器(TLCD)和磁流变液阻尼器(MRD)组成的新型半主动控制装置.建立了含有半主动控制力项的MR-TLCD力学模型以及MR-TLCD与单自由结构耦合运动方程,等效线性化处理了MR-TLCD力学方程中的非线性阻尼项.采用谱分析方法研究了MR-TLCD对单自由结构风致抖振情况下控制效果.研究结果表明,在质量比和频率比一定的情况下,MR-TLCD能够通过只改变外接电源进而改变MR-TLCD阻尼力即可实现良好的优化减振性能.且加速度控制效果优于位移控制效果.  相似文献   

9.
王剑  周春桂  朱长春  谢石林  张希农 《工程力学》2007,24(10):170-174,143
利用线性回归方法,对磁流变阻尼器阻尼力与速度、加速度间的函数关系作了线性与非线性的区分,采用神经网络对非线性部分进行建模,并结合线性部分构建了磁流变阻尼器的模型。在此基础上,融合汽车悬架的先验知识模型,建立了采用磁流变阻尼器的4自由度1/2车辆半主动悬架系统的杂交模型。最后利用SANTANA 2000型轿车的参数进行仿真,并与基于磁流变阻尼器非线性滞回模型的建模方法作了比较,结果表明:杂交建模方式结构简单、计算量小、模型准确、便于进行系统主要动力学特性的分析。  相似文献   

10.
针对冲击缓冲用磁流变阻尼器对快速性的要求,对其响应特性进行理论建模与实验研究。根据磁流变线圈电磁电路,建立了磁感应强度响应特性理论模型,并用频率测定方法确定了响应时间常数。通过实验测试了不同电流条件下磁流变阻尼器的磁感应强度阶跃响应,结果表明不同幅值的激励电流对磁感应强度的响应并无明显影响,获得上升阶跃平均响应时间常数为4.9 ms,下降阶跃平均响应时间常数为2.8 ms。建立了剪切屈服应力的二阶响应模型,并利用冲击实验台测试了冲击载荷下磁流变阻尼器剪切屈服应力的阶跃响应,通过模型拟合获得响应时间常数为4.8 ms。实验结果表明剪切屈服应力二阶模型能较好地吻合实验响应曲线,说明该模型能够较准确地描述冲击条件下磁流变阻尼器的响应特性。  相似文献   

11.
磁流变阻尼器的模糊逼近   总被引:1,自引:0,他引:1  
由于磁流变液具有非线性特性,所以磁流变阻尼器的输入输出问具有很强的非线性关系。可准确描述其非线性特性的磁流变阻尼器正模型通常非常复杂,难以直接得到逆模型。考虑到某些模糊系统的万能逼近能力,本文提出用模糊系统来逼近磁流变阻尼器逆模型的新思路。根据自适应神经模糊推理系统原理,设计两个模糊系统分别逼近磁流变阻尼器的正模型和逆模型。研究结果表明:无论是正模型还是逆模型。对于训练数据,模糊系统均可以准确逼近,而对于检验数据也可比较准确逼近。正模型的逼近效果稍好,若要提高逆模型ANFIS的逼近精度.将以增加系统复杂性为代价。模糊逼近可以推广到其它的磁流变阻尼器模型中,特别是可对正模型未知的磁流变阻尼器进行建模与控制。  相似文献   

12.
彭长乐  陈城  侯和涛 《工程力学》2020,37(1):175-182
磁流变阻尼器(Magneto-Rheological damper)因其优异的性能,在地震和风荷载下的结构振动控制中有广阔的应用。采用磁流变阻尼器进行结构控制时,建立相对精确的非线性模型是设计控制策略重要因素之一,也是保证对其进行数值分析时具有较高可信度的关键因素之一。从传统优化方法获得的确定性模型参数无法考虑由于磁流变阻尼器的现象学模型(phenomenological model)内在的不确定性,从而可能导致阻尼器模型出现不准确的预测。使用马尔可夫链蒙特卡洛方法,该研究对磁流变阻尼器的Maxwell Nonlinear Slider(MNS)模型的不确定性分析,并通过与现有200 kN足尺磁流变阻尼器试验结果,证明了概率模型能够更好地预测磁流变阻尼器在预定的正弦曲线位移和实时混合模拟的位移响应下的输出力和能量耗散,从而为进一步分析结构在磁流变阻尼器控制下的响应预测提供了更为有效的工具。  相似文献   

13.
磁流变阻尼器的实验建模   总被引:33,自引:6,他引:27  
磁流变阻尼器是一种应用前景广阔的半主动控制阻尼器。基于对磁流变阻尼器的实验,建立了描述磁流变阻尼器阻尼特性的Bingham塑性模型和非线性滞回模型。讨论了施加电压(磁场强度)、激振振幅及频率对两种模型的参数的影响。该文提出的非线性滞回模型具有精度高、参数识别过程简单和准确反映磁流变阻尼器滞回特性等优点。  相似文献   

14.
永磁调节式MR阻尼器试验研究及工程应用   总被引:7,自引:0,他引:7  
设计制作了永磁调节式MR阻尼器,在专用加载试验台上对该阻尼器的力学性能进行了试验研究,分析了影响阻尼力的各种因素,对永磁式MR阻尼器和油阻尼器、橡胶阻尼器进行了拉索减振的现场对比试验研究。结果表明,所设计制作的永磁式MR阻尼器阻尼力可调范围大,比油阻尼器具有更好的温度稳定性和更大的耗能减振能力,能保证每根拉索取得最优的减振效果。该阻尼器巳成功应用于长沙洪山大桥,解决了该桥严重的风致振动问题。  相似文献   

15.
为使磁流变(MR)阻尼器摆脱对外部电源的依赖,基于振动能量回收技术构建了由旋转式永磁直流电机与只需较小能量供给的MR阻尼器集成的自供电MR阻尼器减振系统,测试了能量回收电机的电学性能与自供电MR阻尼器的力学性能,并定性分析了自供电MR阻尼器被动控制的减振机理。结果表明:自供电MR阻尼器可行性强,性能优越,且兼具速度反馈与离复位控制特性。  相似文献   

16.
MR阻尼器半主动控制对拉索减振效果的仿真分析   总被引:1,自引:1,他引:1  
为控制斜拉索的大幅振动,在Hamilton原理基础上应用Galerkin法建立了斜拉索动力计算模型。采用基于位移和速度方向的半主动控制算法,对某大桥330m长斜拉索和MR阻尼器组成的系统进行了动力分析,以全索全时段振动响应的均方根作为振动控制效果的评价指标。磁流变阻尼器力学关系选用Spencer现象模型。比较了MR阻尼器半主动控制与被动控制对斜拉索前三阶的减振效果,对MR阻尼器耗能机理和半主动控制算法的实用性进行了探讨。同时考察了系统的共振峰频率漂移及滞回曲线形状,提出了理想的粘性可变阻尼器模型。分析表明:基于位移和速度方向半主动控制的算法简单、易于操作、安全可靠且对长索多阶振动模态亦能取得较好的减振效果,优于被动控制。MR阻尼器的制振效果主要来自耗能,调频作用较小。  相似文献   

17.
赖大坤  王代华 《功能材料》2006,37(6):999-1002
研究了采用ANSYS有限元仿真工具对磁流变(magnetorheological,MR)阻尼器性能进行仿真预估的方法.针对具有相对位移自传感功能的磁流变阻尼器,通过对其二维静磁场有限元模型的仿真分析可以得到阻尼通道区的磁场分布.借助有限元仿真分析结果和磁流变阻尼器混合工作模式的阻尼力学模型,建立了基于MATLAB/SIMULINK工具的磁流变阻尼器的性能预估仿真模块,可以获得阻尼器的阻尼力特性.  相似文献   

18.
磁流变阻尼器与拉索振动控制研究   总被引:1,自引:0,他引:1  
磁流变阻尼器是一种新型智能装置,具有阻尼力连续逆顺可调并且可调范围大、良好的温度稳定性以及很好的耗能减振等特点,因而在拉索振动控制中较其它阻尼器具有显著的优势.本文总结介绍了自2000年以来应用磁流变阻尼器抑制拉索振动方面的主要研究成果.进行了拉索-磁流变阻尼器系统的减振性能仿真研究,得到了拉索模态阻尼比与阻尼器安装高度、输入电压等参数的关系,提出了应用磁流变阻尼器进行拉索振动控制的数学模型和工程实用设计方法.开展多次现场试验研究,全面评估了磁流变阻尼器的实际减振性能.开发了磁流变式拉索减振新技术,并已于2002年在岳阳洞庭湖大桥全桥实施.作者发明了一种永磁调节式磁流变阻尼器,解决了供电无保证时磁流变阻尼器的应用问题;并将其应用于长沙洪山大桥的拉索减振.近4年来显示了磁流变阻尼器对拉索良好的减振效果.  相似文献   

19.
MR阻尼器对建筑结构地震反应的半主动H∞控制   总被引:4,自引:0,他引:4  
颜桂云  孙炳楠  陆鸣 《工程力学》2004,21(2):95-100
研究应用MR阻尼器对建筑结构地震反应进行半主动控制的算法和原理。介绍了MR阻尼器的恢复力模型,并对其参数进行了设计,提出了基于全状态反馈与基于观测器的半主动H∞ 控制律。通过对装有两个MR阻尼器的六层框架结构的地震反应分析表明,基于这两种半主动控制律的控制方法能有效地减小结构的地震反应,并且具有好的鲁棒性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号