首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this study, Al_2O_3-washcoated SiC(Al_2O_3–SiC) foams and Al_2O_3 powder were employed as the supports of a Ni catalyst for the liquid-phase hydrogenation of benzaldehyde. A series of Ni/Al_2O_3–SiC foam catalysts and Ni/Al_2O_3 powder catalysts with a Ni loading from 10 wt% to 37 wt% of the weight of Al_2O_3 were first prepared by a deposition–precipitation(DP) method. The catalytic activity and recyclability of both kinds of catalysts were then compared. Although it had a smaller accessible surface area with the reactant, the foam catalyst with a Ni loading of 16 wt% exhibited a slightly higher conversion of benzaldehyde after 6 h(of 99.3%) in comparison with the Ni/Al_2O_3 catalyst with identical Ni loading(conversion of 97.5%). When the Ni loading increased from 16 wt% to 37 wt%, the reaction rate obtained with the foam catalyst increased significantly from 0.108 to 0.204 mol L~(-1)h~(-1), whereas the reaction rate obtained with the powder catalyst increased from 0.106 to 0.123 mol L~(-1)h~(-1). Furthermore, the specific activity(moles of benzaldehyde consumed by 1 g min~(-1)of Ni) of the foam catalyst with a Ni loading above 30 wt% was superior to that of the powder catalyst because of its smaller Ni-particle size and higher mass-transfer rate. The foam catalyst displayed a high recyclability as a function of run times owing to the strong interaction between the Ni component and the Al_2O_3 coating. The conversion of benzaldehyde over the foam catalyst remained almost unchanged after being used 8 times. In comparison, a drop of 43% in the conversion of benzaldehyde with the powder catalyst was observed after being used 7 times due to the leaching of the Ni component.  相似文献   

2.
Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single‐structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy‐density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two‐step process. The 3D few‐layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α‐MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as‐prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg?1 is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg?1). A high specific capacitance (1108.79 F g?1) and power density (799.84 kW kg?1) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge–discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy‐storage devices with high stability and power density in neutral aqueous electrolyte.  相似文献   

3.
This article describes a new process to manufacture open-cell steel foams. Calcium chloride anhydrous is used as a space holder. By changing the values of the main manufacturing parameters such as volume percentage, and the size and shape of the space holder, we produce different steel foam samples which cover a wide range of solid fraction, pore size, and shape. The effects of space-holder content and sintering condition such as temperature and time on the porosity of steel foam samples are discussed. The microstructure and composition of steel foam samples are observed and analyzed by scanning electron microscope and X-ray diffraction. The compressive curves of steel foams are measured by a universal testing machine. The experiment results show the compressive strength of steel foam samples with porosities between 65% and 85% is in the range of 66.4 ~ 12.9 MPa. The compressive strength depends mainly on the porosity and pore shape. The absorbed energy per unit volume (W) of steel foams with porosities between 85% and 65% is in range of 6.8 ~ 31.2 MJ/m3. Under the condition of identical porosity, the absorbed energy per unit volume (W) of steel foam is about three times of aluminum foam. In compression, steel foam specimens show heterogeneous macroscopic deformation.  相似文献   

4.
Compressive mechanical test and numerical simulation via finite element modeling have been employed on closed-cell copper-matrix nanocomposite foams reinforced by alumina particles. The FE analysis' purpose was to model the foam deformation behavior under compressive loading and to investigate the correlation between material characteristics and the compressive mechanical behavior. Exploring this, several foam samples with different conditions were manufactured and compression test was carried out on the samples. Scanning electron microscopy and image analysis have been performed on the foam samples to obtain the required data for the numerical simulation. The stress–strain curves exhibited plateau stress between 18 and 112.5 MPa and energy absorption in the range of 20.03–51.20 MJ/m3 for the foams with different relative densities. The foams exhibited enhanced mechanical properties to an optimum value, as a consequence of increasing the reinforcing nanoparticles, through both experimental tests and numerical simulation data. Also, the validated model of copper-matrix nanocomposite foams has been used to probe stress distribution in the foams. In addition, the results obtained by numerical simulation via ABAQUS CAE finite element modeling provided support for experimental test results. This confirmed that FEM is a favorable technique for predicting mechanical properties of nanocomposite copper foams.  相似文献   

5.
To reduce the weight of motorcycle helmet, metal foam for outer shell in place of conventional thermoplastics was tested. The dynamic behaviour of this new helmet was studied through experiments and numerical modeling. Open-face motorcycle helmets were designed with metal foam shell and impact experiments were performed with these helmets fitted on a headform. A finite element model was developed and the predicted acceleration of headform from this model was validated against the experiments. The mechanical behaviour of full-face helmets with metal foam shell was investigated next. The FE analysis was performed separately with rigid and deformable heads. Head injury criterion (with rigid head) and stresses in brain (with deformable head) were evaluated separately for metal foam shell and ABS shell helmets. The helmet impact performance is examined with two separate densities of metal foam. The shell with low-density metal foam (150 kg/m3) gives a better performance compared to ABS shell. The metal foam shell showed significant visible plastic deformation in the impact region.  相似文献   

6.
Nano phase hydroxyapatite (HA) bioceramics have gained importance in the biomedical field due to their superior biological properties. In this study, nanostructured HA coating was used to increase the bioactivity of a piezoelectric bioceramic, barium titanate (BT). Early reports on the influence of collagen piezoelectricity in remodeling of bone have attracted many researchers to piezoelectric bioceramics such as BT. Hence; porous BT was used as the matrix of a new bone graft composite and then coated with nanostructured HA. BT ceramic was foamed via a direct foaming method with a spray of polyurethane foam. The surface of the foam voids was coated with HA via sol–gel and dip‐coating methods. X‐ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques were used to characterize the prepared coated foam. XRD and TEM analysis showed that the HA coating had a nanostructure with crystallite size of 20–30 nm. SEM images of the prepared samples showed that the HA coating has about 25 µm thickness. The bioactivity of the prepared composite was evaluated in an in vitro study. The variation of Ca2+ and PO43? ions versus time in simulated body fluid (SBF) solution were measured by inductively coupled plasma (ICP) analysis during 1 month and the results showed that the mineralization of calcium phosphate (Ca‐P) on HA coated porous samples was much more than that in non‐coated sample. The SEM micrographs and energy‐dispersive X‐ray spectroscopy (EDS or EDX) analysis of the samples after 1 month of immersing in SBF confirm that Ca‐P phase (bone‐like apatite) was significantly mineralized on HA coated porous BT samples. It was concluded that the nanostructured HA coating would improve the bioactivity of BT foam.  相似文献   

7.
The relative ablation efficiency at different materials (in particular human cornea and poly(methyl methacrylate) (PMMA)) was analysed. A comprehensive model, which directly considers applied correction, including astigmatism, as well as laser beam characteristics and ablative spot properties has been developed. The model further provides a method to convert the deviations in achieved ablation observed in PMMA to equivalent deviations in the cornea. Radiant exposures from about 90?mJ/cm2 to about 500?mJ/cm2 correspond to cornea-to-PMMA ablation ratios of about 9 and about 1.7, respectively (about 7 and 1.3 optically). Super-Gaussian order from simple Gaussian profile to flat-top profile, and for a radiant exposure of 250?mJ/cm2, correspond to cornea-to-PMMA ratios of about 2.3 and about 1.6, respectively (about 1.7 and about 1.2 optically). For a Gaussian beam of 160?mJ/cm2 radiant exposure, a severe overcorrection of +50% in PMMA corresponds only to an overcorrection of +29% on corneal tissue, whereas a moderate overcorrection of +20% in PMMA corresponds to an overcorrection of +12% on corneal tissue. For a severe undercorrection of ?50% ablation observed in PMMA, the range for radiant exposures from about 90?mJ/cm2 to about 500?mJ/cm2 correspond to corneal undercorrections of about ?14% to about ?40%, respectively. The proposed model can be used for calibration, ablation pattern test and development, verification and validation purposes of laser systems used for ablation processes at relatively low cost and would directly improve the quality of results.  相似文献   

8.
Here we demonstrate that graphene oxide (GO) film on Ni foam can be doped with nitrogen atoms and reduced directly at a lower temperature of 90?°C using ammonia solution as reducing agent and nitrogen source. The reduction and nitrogen doping of GO occur simultaneously when GO film on Ni foam is immersed into ammonia solution. The nitrogen doping can be realised and the content of N in graphene film turns out to be rather good as high as 3.60%. When used as binder-free electrode, the resulting graphene film on Ni foam delivers a gravimetric capacitance of 230 F g?1. It also exhibites relatively an outstanding rate capability of 164 F g?1 at 83.3 A g?1 and better cycle stability that capacitance retention maintains at 96.7% of its initial capacitance capacitance after 2000 cycles. The method also provides a universal route for preparing a binder-free graphene-based electrode.  相似文献   

9.
Polyurethane foam materials have been used as core materials in a sandwich construction with S2-Glass/SC-15 facings. The foam material has been manufactured from liquid polymer precursors of polyurethane. The precursors are made of two components; part-A (diphenylmethane diisocyanate) and part-B (polyol). In one set of experiments, part-A was mixed with part-B to manufacture the foam. In another set, TiO2 nanoparticles have been dispersed in part-A through ultrasonic cavitation technique. The loading of nanoparticles was 3% by weight of the total polymer precursor. The TiO2 nanoparticles were spherical in shape, and were about 29 nm in diameter. Sonic cavitation was carried out with a vibrasound liquid processor at 20 kHz frequency with a power intensity of about 100 kW/m2. The two categories of foams manufactured in this manner were termed as neat and nanophased. Sandwich composites were then fabricated using these two categories of core materials using a co-injection resin transfer molding (CIRTM) technique. Test samples extracted from the panel were subjected to quasi-static as well as high strain rate loadings. Rate of loading varied from 0.002 s–1 to around 1300 s–1. It has been observed that infusion of nanoparticles had a direct correlation with the cell geometry. The cell dimensions increased by about 46% with particle infusion suggesting that nanoparticles might have worked as catalysts during the foaming process. Correspondingly, enhancement in thermal properties was also noticed especially in the TGA experiments. There was also a significant improvement in mechanical properties due to nanoparticle infusion. Average increase in sandwich strength and energy absorption with nanophased cores was between 40–60% over their neat counterparts. Details of manufacturing and analyses of thermal and mechanical tests are presented in this paper.  相似文献   

10.
This study introduces a new production method for production of the insulation blocks made of pumice aggregate, lightweight concrete and expanded polystyrene foam (EPS). Products produced via this method were analyzed for compliance with the Turkish standards institution (TS EN) standards. A single-line lightweight masonry block with 200?mm?×?400?mm?×?200?mm dimension (width?×?length?×?height) was produced to produce an insulation block by using circular saw block cutting machine for the first time. Physical and thermal properties of the all-in aggregate pumice used in lightweight aggregate were determined and the all-in aggregate pumice was subjected to sieve analysis. After the production, insulation blocks were subjected to some analysis according to pre-set standards to determine their usability as masonry unit. After the curing period (28?days), it was found that the highest value of deviation from the plane was 0.150?mm; deviation of the flanges from plain parallelism was 0.40?mm; dry density was 562?kg/m3; compressive strength value was 2.99?N/mm2; water absorption coefficient by capillaries was 20.63?g/mm2sn0.5; sound absorption value of the masonry unit was 60 (dB); thermal conductivity coefficient was 0.33?W/mK; initial shear strength value was 0.471?N/mm2 and plaster-holding capacity was considerably high. When compared to other construction elements, thermal conductivity and masonry unit weight of the insulation block and masonry costs were found to be lower.  相似文献   

11.

Nickel oxide is a promising material for electrochemical energy storage devices due to its high specific surface area, rapid redox reactions, and short diffusion path in the solid electrode. It has been known that the loading of metallic elements into the NiO matrix enhances these superior properties. NiO material is electrochemically deposited on Ni foam, and then, Ag and Cu thin layers are coated on NiO by thermal evaporation. The produced NiO/Ni foam and AgCu:NiO/Ni foam electrodes are annealed at 400 °C for 1 h. Those are utilized as anode for high-performance energy storage electrode in an alkaline solution. The former has an energy density of 56.9 Wh kg?1 at 3155.5 W kg?1, while the latter has a high energy density of 107.6 Wh kg?1 at the corresponding power density of 2957.7 W kg?1. Although specific capacitance of the former decreases to 46.2% of its original capacitance at 10 A g?1 after 5000 cycles, the latter exhibits higher cycling stability with 71.0% retention after 5000 charge–discharge cycles owing to the loading of Ag and Cu into NiO matrix. Charge transfer resistance of NiO/Ni foam, which is inversely proportional to electroactive surface area, reduces from 19.4 to 0.28 Ω after the incorporation of Ag and Cu. Compared to NiO/Ni foam, AgCu:NiO/Ni foam with a higher electroactive surface area is more appropriate for charge accumulation. As mention above, the features of AgCu:NiO/Ni foam indicate that it is a promising material as an effective start-of-art energy storage device.

  相似文献   

12.
A copper (Cu) foam was brazed with Cu-4.0Sn-9.9Ni-7.8P filler foil for joint strength and interface analysis. Brazed 50 pores per inch (PPI) Cu foam yielded a maximum compressive strength of 14.4?MPa with a 127% increment compared to nonbrazed Cu foam. 15 PPI Cu foam produced a maximum shear strength of 2.7?MPa. Scanning electron microscopy showed that the thickness of the brazed seam decreased with increasing the Cu foam’s PPI. The formation of the Cu, Cu3P (P: phosphorus) and Ni3P (Ni: nickel) at the Cu/Cu foam interface was validated using energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction. EDX line scanning analysis revealed the diffusion of P and Ni into Cu foam, which took place via capillary force action.  相似文献   

13.
The aim of this work is to study the effects of laser additive manufacturing on microstructure and mechanical properties of foam Al–12?wt-%Si aluminium alloy with/without TiH2 foaming agent. The results showed that low porosity closed foam Al–12Si was successfully obtained. The effect of processing parameters on the porosity is discussed. The porosity was changed from initial 20.9% without foaming agent to 32.3 and 45.9% with 5 and 10% addition of foaming agent, respectively. Average micro-hardness values of the obtain foam Al–Si alloy is varied from 100 to 130?HV and the shape of compressive stress–strain curve is as the same as foam aluminium made by powder metallurgy and casting methods.  相似文献   

14.
Light weight high performance sandwich composite materials have been used more and more frequently in various load bearing applications in recent decades. However, sandwich materials with thin composite face sheets and a low density foam core are notoriously sensitive to failure by localized external loads. These loads induce significant local deflections of the loaded face sheet into the core of the sandwich composite material, thus causing high stress concentrations. As a result, a complex multiaxial stressed and strained state can be obtained in the area of localized load application. Another important consequence of the highly localized external loads is the formation of a residual dent in the face sheet (a geometrical imperfection) that can reduce significantly the post-indentation load bearing capacity of the sandwich structure.This paper addresses the elastic–plastic response of sandwich composite beams with a foam core to local static loading. The study deals with a 2D configuration, where a sandwich beam is indented by a steel cylinder across the whole width of the specimen. The ABAQUS finite element package is used to model the indentation response of the beams. Both physical and geometrical non-linearities are taken into account. The plastic response of the foam core is modeled by the 1CRUSHABLE FOAM and the 1CRUSHABLE FOAM HARDENING option of the ABAQUS code. The purpose of the numerical modeling is to develop correct 2D simulations of the non-linear response in order to further understand the failure modes caused by static indentation. In order to verify the finite element model, indentation tests are performed on sandwich composite beams using a cylindrical indentor. The numerical results show good agreement with experimental test data.  相似文献   

15.
This work presents computational solutions and experimental results on the most important parameters influencing thermal shock. The focus lies on the thermal shock parameters of hybrid carbon foams reinforced with yttria-stabilized zirconia (YSZ) and silicon carbide (SiC) coatings as well as MgO matrix composites under thermal and mechanical load. The computational approach is related to the quantification of failure stresses as a function of structural foam parameters (e.g. cell size, strut diameter, and strut length) using a microstructurally based finite element analysis. Similar to the early stages of thermomechanical modeling of refractories, the MgO–C hybrid foam is modeled by linear elasticity. The maximal occurring tensile stresses are used as a failure criterion. For the first time, numerical results of this simplified computational approach are correlated to the experimentally motivated extended Hasselman’s equations. Based on the numerical simulation of the Hasselman relation it is shown, that crack initiation under thermal shock loading could be simulated with this simplified only linear elastic approach, outlined in this work. Along with the computational investigation of the influence of microstructural parameters on the thermal shock resistivity, the experimental results, e.g. the parameters of final crack length and the final crack densities, make it possible to draw conclusions about the microstructural foam parameters that are the most suitable to achieve advanced thermal shock characteristics of next generation hybrid carbon foam refractories.  相似文献   

16.
Steel–steel composite metal foam (S–S CMF) is a novel metal matrix composite material characterized by its high strength-to-weight ratio and unique mechanical and thermal properties. It is made up of hollow stainless-steel spheres, embedded in stainless steel matrix, with 65–70% air in the structure making it effective as an insulating material. S–S CMF is being explored for use in tank cars carrying hazardous materials (HAZMATs) as a potential partial replacement for conventional carbon steel and thermal insulating material currently being used. In this study, S–S CMF material is numerically and experimentally evaluated for its thermal protection performance. Experimental studies are conducted in scaled-down jet fire condition while numerical studies are conducted using fire dynamics simulator (FDS). Based on experimental and modeling results, as well as uncertainty studies, 13–15 mm thick S–S CMF ranging in density of about 2.5 g cc−1 tested as novel structural/insulating material meets the acceptance criterion for small-scale simulated torch-fire testing. Further success is anticipated in future full-scale evaluation of 122 × 122 cm samples. The outstanding fire resistance and thermal protection of S–S CMF is attributed to the substantial volume of air trapped within the material, which correlates to its total density.  相似文献   

17.
Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture on metal foam covers were experimentally investigated. The refrigerant is R113, and the oil is VG68. The copper foams, having ppi (pores per inch) of 10 and 20, porosity from 90% to 98%, and thickness of 5 mm, are selected in this study. Experimental conditions include a saturation pressure of 101 kPa, oil concentrations from 0 to 5%, and heat fluxes from 0 to 80 kW m−2. The experimental results indicate that the nucleate pool boiling heat transfer coefficient on copper foam covers is larger than that on flat heated surface by a maximum of 160% under the present experimental conditions; the presence of oil deteriorates the nucleate pool boiling heat transfer on copper foam covers by a maximum of 15% under the present experimental conditions, and the deterioration of oil on nucleate pool boiling heat transfer on copper foam covers is lower than that on a flat heated surface. A correlation for predicting the nucleate pool boiling heat transfer coefficient of refrigerant/oil mixture on copper foam cover is developed, and it agrees with 95% of the experimental data within a deviation of ±20%.  相似文献   

18.
For the carbon foam production, mesophase pitch pellets are heated up in a reactor in an aluminum mold to specified pressures and finally pressure released to obtain green carbon foam samples. The green foams were then stabilized and carbonized. The effects of various temperatures, pressures and pressure release times on production of carbons foams are investigated. The samples are subjected to SEM, mechanical testing, mercury porosimetry analysis and bulk density determination for characterization. For the processing temperatures of 553, 556, 566 and 573 K, the densities of the foams produced were 380, 390, 410 and 560 kg/m3 respectively. The compressive strengths of the respective samples were increased from 1.47, to 3.31 MPa for the lowest and highest temperatures. The processing pressures were 3.8, 5.8, 6.8 and 7.8 MPa. The bulk density and the compressive strength of the carbon foams produced were changed from 500 to 580 kg/m3, and 1.87 to 3.52 MPa for the lowest and highest pressures respectively. Pressure release times of 5 s, 80 s, 160 s and 600 s are used to produce different carbon foam samples. The densities and the comprehensive strengths measured for the highest and lowest pressure release times changed from 560 to 240 kg/m3 and 3.31 to 2.16 MPa respectively. The pore size distribution of all of the products changed between 0.052×10-6m and 120×10-6m. Increase in temperature and pressure increased the bulk density and compressive strength of the carbon foams. The mercury porosimetry results show % porosity increase with increasing temperature and pressure. On the other hand, increase in pressure release time decreased the bulk density, compressive strength of the carbon foam.  相似文献   

19.
The water uptake, evolution of the cell morphology and basic mechanical properties of a 48 kg/m3 commercial polyvinyl chloride (PVC) foam immersed in distilled water and seawater for up to 12 months is investigated. The samples of PVC foam immersed in distilled water showed a faster water absorption rate and water uptake than the samples immersed in seawater. For both conditions, the tensile and compressive properties of the foam evidence a plasticization effect with a small reduction in the elastic modulus (∼10%) and an increase in the ultimate tensile strain (∼19%) for 12 months of immersion. The detailed micrographic analysis conducted provides conspicuous evidence that for both conditions the cells at the surface of the foam are severely damaged after a few days of immersion, but such cell damage is superficial and does not cause severe irreversible damage to the internal cellular microstructure of the foam.  相似文献   

20.
Large amounts of rock dust are produced in the process of constructing large tunnels. It then accumulates in the tunnel where, because it is difficult to disperse, it is a serious threat to workers’ health; more than 90% of dust is respirable. Traditional methods to reduce rock dust concentrations, such as a water spray, ventilation, and foam are not effective. Therefore, a new dry-type filtration dust collection method is put forward to use in the construction of large tunnels, and a dry-type filtration dust collection device is designed. Experiments and field application of the dry-type filtration dust collection device were carried out. Experimental results showed that the total dust suppression efficiency reached 98.41% and the leakage rate was 7.86% with the dry-type filtration dust collector. The field application in the Chaoyang tunnel indicated that the efficiency of the dry-type dust collector in suppressing total and respirable dust was 98.13% and 97.86%, respectively. During lining trolley shotcreting operations, the total dust concentration decreased from 253.41?mg/m3 to 29.97?mg/m3 and the respirable dust concentration dropped from 226.73?mg/m3 to 28.85?mg/m3. The dust collection system also reached the optimal dust removal efficiency in two other tunnel construction operations and made an obvious improvement in the environment behind the dust collection system in the large tunnel. The dry-type filtration dust collector effectively improves the rock dust collection efficiency and makes up for the problem of inadequate treatment of respirable dust by the traditional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号