首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper considers two different due date assignment and sequencing problems in single machine where the processing times of jobs are random variables. The first problem is to minimise the maximum due date so that all jobs are stochastically on time. It is shown that sequencing the jobs in decreasing service level (DSL) order optimally solves the problem. The results are then extended for two special cases of flow shop problem. The other problem is to minimise a total cost function which is a linear combination of three penalties: penalty on job earliness, penalty on job tardiness, and penalty associated with long due date assignment. The assignment of a common due date and distinct due dates are investigated for this problem. It is shown that the optimal sequence for the case of common due date is V-shaped.  相似文献   

2.
Xin-Na Geng  Danyu Bai 《工程优选》2019,51(8):1301-1323
This article addresses the no-wait flowshop scheduling problem with simultaneous consideration of common due date assignment, convex resource allocation and learning effect in a two machine setting. The processing time of each job can be controlled by its position in a sequence and also by allocating extra resource, which is a convex function of the amount of a common continuously divisible resource allocated to the job. The objective is to determine the optimal common due date, the resource allocation and the schedule of jobs such that the total earliness, tardiness and common due date cost (the total resource consumption cost) are minimized under the constraint condition that the total resource consumption cost (the total earliness, tardiness and common due date cost) is limited. Polynomial time algorithms are developed for two versions of the problem.  相似文献   

3.
AZIZOGLU  MERAL  WEBSTER  SCOTT 《IIE Transactions》1997,29(11):1001-1006
We consider the NP-hard problem of scheduling jobs on a single machine about an unrestricted due window to minimize total weighted earliness and tardiness cost. Each job has an earliness penalty rate and a tardiness penalty rate that are allowed to be arbitrary. Earliness or tardiness cost is assessed when a job completes outside the due window, which may be an instant in time or a time increment defining acceptable job completion. In this paper we present properties that characterize the structure of an optimal schedule, present a lower bound, propose a two-step branch and bound algorithm, and report results from a computational experiment. We find that optimal solutions can be quickly obtained for medium-sized problem instances.  相似文献   

4.
Scheduling problems with earliness and tardiness penalties are commonly encountered in today's manufacturing environment due to the current emphasis on the just-in-time (JIT) production philosophy. The problem studied in this work is the parallel machine earliness-tardiness non-common due date sequence-dependent set-up time scheduling problem (PETNDDSP) for jobs with varying processing times, where the objective is to minimize the sum of the absolute deviations of job completion times from their corresponding due dates. The research presented provides a first step towards obtaining near optimal solutions for this problem using local search heuristics in the framework of a meta-heuristic technique known as simulated annealing (SA). The computational study shows that, using the SA methodology, significant improvements to the local search heuristic solutions can be achieved for problems of this type.  相似文献   

5.
研究了有关交货期窗口的单机调度问题。在过去的10年中,准时化的概念对中国工业的影响很大。早于或晚于交货期窗口的任务都不受欢迎,且将导致提前或拖期惩罚。如果任务的完工时间偏离了交货期窗口,就要受到固定的惩罚,惩罚量与提前或拖期完工无关。目标是极小化所有惩罚的和。设如果任务在交货期准时完工,则不受惩罚;目标就是寻找一个最优调度极小化提前和拖期任务的总数。给出了确定最优调度的多项式时间算法,最后的例子说  相似文献   

6.
We study the problem of two-machine no-wait flowshop scheduling with learning effect and convex resource-dependent processing times. Under the condition of the due-date assignment with common flow allowance (i.e. slack (SLK) due-date assignment), we provide a bi-criteria analysis where the first criterion is to minimise the scheduling criteria (i.e. the weighted sum of earliness, tardiness and flow allowance costs), and the second criterion is to minimise the resource consumption cost (i.e. the weighted sum of resource consumption cost). The objective is to determine the optimal job sequence, resource allocations and common (flow allowance) slack time that minimise the three different versions of the two criteria. We prove that these problems can be solved in polynomial time.  相似文献   

7.
Two-agent scheduling has gained a lot of research attention recently. Two competing agents who have their own objective functions have to perform their respective set of jobs on one or more shared machines. This study considers a two-agent single-machine earliness and tardiness scheduling problem where jobs have distinct due dates and unforced idleness in between any two consecutive jobs is allowed. The objective is to minimize the total earliness and tardiness of jobs from one agent given that the maximum earliness–tardiness of jobs from the other agent cannot exceed an upper bound. In other words, each job from the second agent has a hard due window, whereas each job from the first agent will incur a penalty if completed either before or after its due date. Two mathematical models of the problem are presented, and several necessary optimality conditions are derived. By exploiting the established dominance properties, heuristic algorithms are developed for the problem. Finally, computational experiments are conducted to assess the models and heuristic procedures.  相似文献   

8.
In this paper, we consider common due-window assignment and scheduling problems with general position-dependent processing times involving deteriorating and compressible maintenance activity on a single machine. Two models associated with maintenance activity are examined in this article, in which the maintenance length is assumed to be either time-dependent and compressible or position-dependent and compressible. The objective is to find jointly the location and size of due-window, position of maintenance as well as resource amount allocated to it, and job sequence to minimise a total cost function based on earliness, tardiness, window location, window size and resource cost. We show that the problem considered in each of the two models’ setting can be optimally solved with polynomial time algorithm by reducing to assignment problem. Finally, two examples are provided to illustrate the solution procedures.  相似文献   

9.
This paper investigates a meta-heuristic solution approach to the early/tardy single machine scheduling problem with common due date and sequence-dependent setup times. The objective of this problem is to minimise the total amount of earliness and tardiness of jobs that are assigned to a single machine. The popularity of just-in-time (JIT) and lean manufacturing scheduling approaches makes the minimisation of earliness and tardiness important and relevant. In this research the early/tardy problem is solved by Meta-RaPS (meta-heuristic for randomised priority search). Meta-RaPS is an iterative meta-heuristic which is a generic, high level strategy used to modify greedy algorithms based on the insertion of a random element. In this case a greedy heuristic, the shortest adjusted processing time, is modified by Meta-RaPS and the good solutions are improved by a local search algorithm. A comparison with the existing ETP solution procedures using well-known test problems shows Meta-RaPS produces better solutions in terms of percent difference from optimal. The results provide high quality solutions in reasonable computation time, demonstrating the effectiveness of the simple and practical framework of Meta-RaPS.  相似文献   

10.
We consider a two-machine no-wait permutation flow shop common due date assignment scheduling problem where the processing time of a job is given as a function of its position in the sequence and its amount of resource allocated to this job. The common due date (CON) assignment method means that all the jobs are given a common due date. We need to make a decision on the common due date, resource allocation and the sequence of jobs to minimise total earliness, tardiness, common due date cost and total resource cost. We show that the problem remains polynomially solvable under the proposed model.  相似文献   

11.
This paper considers a single-machine scheduling problem involving convex resource-dependent processing times and due-window assignment simultaneously. The goal is to minimise the total resource consumption cost under the constraint that the schedule cost involving earliness, tardiness, window location, window size and makespan does not exceed a given limit for two popular due window assignment methods: the common flow allowance (slack) due window assignment method (referred to SLKW) and the common due window assignment method (referred to CONW). We show that the problem can be solved in polynomial time. Some extensions of the problem are also given.  相似文献   

12.
The paper considers the problem of scheduling nindependent and simultaneously available jobs on a single machine, where the job processing times are compressible as a linear cost function. The objective is to find an optimal permutation of the jobs, an optimal due date and the optimal processing times which jointly minimize a cost function consisting of the earliness, tardiness, completion time and compressing costs. It shows that the problem can be solved as an assignment problem.  相似文献   

13.
Workload control is a production planning and control concept designed to meet the need of the make-to-order industry. In this paper, a multi-agent workload control methodology that simultaneously addresses due date setting, job release and scheduling is proposed. To be consistent with just-in-time production, the objective of minimizing weighted job earliness and tardiness is used. Two new rules are developed, by introducing a feedback mechanism, to set job due dates dynamically. These two new rules implicitly include job pool times and, thus, eliminate the need to estimate job pool times in the presence of workload control. At the critical norm defined in this paper job release control can reduce average job flowtime and work-in-process inventory, without worsening earliness and tardiness, and lead-time performances. The proposed methodology is implemented in a flexible job shop environment. The computational results indicate that the proposed methodology is very effective for production planning and control in make-to-order companies. In addition, the proposed methodology is extremely fast and can be implemented in real time.  相似文献   

14.
Scheduling jobs with different processing times and distinct known due dates on parallel machines (which may be idle) so as to minimise the total weighted earliness and tardiness is NP-hard. It occurs frequently in industrial settings with a just-in-time production environment. Here, small instances of this problem are tackled via an exact mixed-integer program, whereas larger instances are approximately solved using hybrid algorithms. The computational investigation discerns what makes a difficult instance, and demonstrates the efficiency of the approach.  相似文献   

15.
This paper considers the scheduling problem faced by a manufacturer who is required to conform strictly to previously agreed due dates (or delivery dates), Penalties are assessed in the event that the product or service delivered is not yet complete. The model allows for a disruption cost each time a delivery is made. The objective is to minimize a total penalty function based on the announced due dates, the tardiness of each job and the number of distinct due dates used. The problem is solved by an efficient algorithm which simultaneously finds optimal solutions for the number of due dates to use, the specifications of those due dates and the order of processing for the jobs. A numerical example demonstrates the operation of the algorithm.  相似文献   

16.
This study investigates a due date quoting problem for a project with stochastic duration, taking the decision-maker’s risk attitude into consideration. The project profit is defined as the difference between the price and the cost that is comprised of production cost and earliness–tardiness penalties. In this situation, the due date determination has to be modelled as a stochastic optimisation due to stochastic duration. Conditional value at risk is thus employed as a performance measure to describe the decision-maker’s risk attitude. In fixed price contract, when the unit production cost is not smaller than the unit penalty on earliness, the optimal due date increases with the increase of the degree of a decision-maker’s risk aversion, the unit penalty on delay, and the decrease of the unit penalty on earliness. Besides, when the price is proportional to the due date and the slope is no bigger than the unit penalty on tardiness, the optimal due date is smaller than the result in fixed price. This is because high price for a short due date encourages a decision-maker to quote a small due date. Further, we compare the optimal due date in different parameter setting where the penalty coefficient of earliness is negative or zero, which means there is reward or no penalty on earliness, respectively. Finally, a case study is conducted to validate the effectiveness and efficiency of the proposed model.  相似文献   

17.
Input control plays a critical role in regulating the release of jobs into a production system, and thereby controlling the inventory levels. We model the input control decision as a bicriteria problem that requires the maximization of the sum of job release times subject to minimum total job tardiness. Although the primary objective addresses job completion delays, the secondary objective considers earliness and waiting times. We propose a solution method that decomposes the original problem into a bicriteria problem for the critical jobs and the maximum release time problem for the noncritical jobs. These problems are solved in an iterative manner as the set of critical jobs is repetitively updated until no further improvement takes place. Computational results show the effectiveness of the proposed method as well as the substantial improvement that can be affected in job release times, without adversely affecting the tardiness values, over an approach that considers the single objective of minimizing total tardiness. This result is of interest to an operating manager who is responsible for controlling work-in-process and finished goods inventory related costs in addition to meeting due dates effectively.  相似文献   

18.
This paper studies linear non-increasing processing times and the common/slack due window assignment problems on a single machine, where the actual processing time of a job is a linear non-increasing function of its starting time. The aim is to minimize the sum of the earliness cost, tardiness cost, due window location and due window size. Some optimality results are discussed for the common/slack due window assignment problems and two O(n log n) time algorithms are presented to solve the two problems. Finally, two examples are provided to illustrate the correctness of the corresponding algorithms.  相似文献   

19.
In this study, we solve the single CNC machine scheduling problem with controllable processing times. Our objective is to maximize the total profit that is composed of the revenue generated by the set of scheduled jobs minus the sum of total weighted earliness and weighted tardiness, tooling and machining costs. Customers offer multiple due dates to the manufacturer, each coming with a distinct price for the order that is decreasing as the date gets later, and the manufacturer has the flexibility to accept or reject the orders. We propose a number of ranking rules and scheduling algorithms that we employ in a four-stage heuristic algorithm that determines the processing times for each job and a final schedule for the accepted jobs simultaneously, to maximize the overall profit.  相似文献   

20.
In this paper, a fuzzy bi-objective mixed-integer linear programming (FBOMILP) model is presented. FBOMILP encompasses the minimisation workload imbalance and total tardiness simultaneously as a bi-objective formulation for an unrelated parallel machine scheduling problem. To make the proposed model more practical, sequence-dependent setup times, machine eligibility restrictions and release dates are also considered. Moreover, the inherent uncertainty of processing times, release dates, setup times and due dates are taken into account and modelled by fuzzy numbers. In order to solve the model for small-scale problems, a two-stage fuzzy approach is proposed. Nevertheless, since the problem belongs to the class of NP-hard problems, the proposed model is solved by two meta-heuristic algorithms, namely fuzzy multi-objective particle swarm optimisation (FMOPSO) and fuzzy non-dominated sorting genetic algorithm (FNSGA-II) for solving large-scale instances. Subsequently, through setting up various numerical examples, the performances of the two mentioned algorithms are compared. When α?=?0.5 (α is a level of risk-taking and when it increases the decision-maker’s risk-taking decreases), FNSGA-II is fairly more effective than FMOPSO and has better performance especially in solving large-sized problems. However, when α rises, it can be stated that FMOPSO moderately becomes more appropriate. Finally, directions for future studies are suggested and conclusion remarks are drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号