首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonclassical features of entangled coherent states (two-mode superposition coherent states) based on two coherent states shifted in phase by π/2 are discussed. Analysis of Cauchy–Schwartz inequality, two-mode quadrature squeezing, oscillatory and sub-Poissonian photon statistics show that nonclassicality exists for these states. Furthermore, it is also observed that special states have remarkably strong nonclassical properties than the entangled coherent states based on famous even–odd coherent states.  相似文献   

2.
Abstract

We examine the non-classical properties of two-mode coherent states based on different unitary irreducible representations of SU(1, 1). Such states are generated by the action of the two-mode squeezing operator on initial states of the field containing arbitrary numbers of photons in each of the two modes. If the initial state of the field is a two-mode vacuum state, the final state is of course the two-mode squeezed vacuum. An initial occupation generalizes the idea of a squeezed vacuum to the SU(1, 1) coherent states. We show that fields in such states have remarkable quantum properties such as sub-Poissonian statistics, violations of the Cauchy-Schwarz inequality, strong correlations in the photon number fluctuations and squeezing. Using information theory formalism, we show that these coherent states are less correlated than the usual two-mode squeezed vacuum. Moreover, we show that an initial coherent amplitude contribution, in a large amplitude limit, can result in the reduction of correlations between modes.  相似文献   

3.
Abstract

The properties of states generated by the application of the two-mode squeeze operator to the pair coherent states are studied. These states are the two-mode analogues of the single-mode squeezed states generated by the application of the single-mode squeeze operator to an ordinary coherent state. In the present case there are correlations between the modes and strong non-classical properties are to be expected. We study the statistical properties of the photon number distributions, squeezing, violations of the Cauchy-Schwartz inequality, quasiprobability distributions and the phase distributions.  相似文献   

4.
We present a scheme to create quantum entanglement between multi-atom Dicke states and two cavity modes by passing N three-level atoms in Λ configuration through a resonant two-mode cavity one by one. We further show that such a scheme can be used to generate arbitrary two-mode N-photon entangled states, arbitrary superposition of Dicke states, and a maximal entangled state of Dicke states. These states may find applications in the demonstration of quantum non-locality, high-precision spectroscopy and quantum information processing.  相似文献   

5.
Abstract

In this paper we have employed the generalized two-mode squeeze operator to discuss the effect of squeezing on two-mode coherent states, number states and thermal states. By using the Glauber second-order correlation function we examined the statistical properties of these various squeezed states. The statistical investigations are carried out for the quasi-probability distribution functions (Wigner function and Q function). The P representation is also considered.  相似文献   

6.
Abstract

We show how one can prepare three-qubit entangled states like W-states, Greenberger-Horne-Zeilinger states as well as two-qutrit entangled states using the multi-atom two-mode entanglement. We propose a technique of preparing such a multi-particle entanglement using stimulated Raman adiabatic passage. We consider a collection of three-level atoms in Λ configuration simultaneously interacting with a resonant two-mode cavity for this purpose. Our approach permits a variety of multi-particle extensions.  相似文献   

7.
Abstract

The nonclassical photon statistics of one-mode and two-mode combination squeezed states introduced recently by Fan, which have less fluctuation in one quadrature phase than the usual two-mode squeezed states, is discussed. It is found that increasing the degree of two-mode squeezing cannot always increase the photon antibunching depth of these generalized two-mode squeezed states.  相似文献   

8.
Abstract

We discuss the connection between quantum correlations and squeezing in simple quantum optical systems. We illustrate this connection by a study of two-mode states of light produced by parametric down-conversion and similar two-photon processes. The intermode correlations in these systems are shown to be responsible for modifications in photon-number sum and difference operators, and for squeezing in the superpositions of the two modes. The disappearance of the diagonal coherent-state quasiprobability function P(α) when non-classical light properties are important is noted, and alternative and better-behaved Wigner functions and coherent-state expectation Q-functions for the two-mode system are developed.  相似文献   

9.
Abstract

The squeezing properties in terms of SU(1, 1) and SU(2) operators for the case of trilinear processes are studied. The initial state of the system is supposed to be a coherent state in one of the modes and number states in the remaining modes. It is pointed out that in several cases a considerable amount of squeezing can be achieved. Due to the common mathematical structure the case of a two-mode coupler with intensity dependent coupling is also analysed.  相似文献   

10.
We have studied the case in which one mode of the light field in the two-mode squeezed vacuum state evolves in a diffusion channel. By virtue of thermo-entangled state representation and the technique of integration within an ordered product, the evolution formula of the field density operator is given. Its non-classical properties, such as squeezing effect, antibunching effect, the violation of Cauchy–Schwartze inequality and the entanglement property between two modes, are studied. The influences of the squeezing parameter and the dissipation time on the non-classical properties are discussed. The results obtained by the numerical method show that its non-classical properties are all weakened with the dissipation. On the other hand, its squeezing effect and the entanglement property between two modes are strengthened, but its antibunching effect and the violation of Cauchy–Schwartze inequality are weakened with the increase of the squeezing parameter.  相似文献   

11.
Abstract

We investigate the relationship between squeezing and reduced phase fluctuations for various states of the single-mode electromagnetic field, including the strongly-squeezed vacuum and phase states. We find that, although squeezing the fluctuations of the electric field that arise from the vacuum guarantees a more well-defined phase, reducing phase fluctuations does not guarantee a squeezed electric field. We also investigate the evolution of the electric field and its fluctuations for a phase state. Our results show that even though the electric field fluctuations never vanish for a phase state, the times when the electric field changes sign are precisely defined. We also discuss why it is not always possible to attribute physical properties to certain states, such as simple superpositions of phase states.  相似文献   

12.
Abstract

It is shown that the deflection of an atom de Broglie wave at two adjacent cavities containing non-resonant weak fields can yield a highly entangled quantum state of the atom–field system in which discernible atomic beams are entangled to internal states of the atom and to two-mode photon-number states of the fields. Two-mode anticorrelated entangled photon-number states characterized by the total photon number can be prepared by the detection of the atom in given directions of the propagation.  相似文献   

13.
Abstract

Two-mode squeezed Gaussons are non-classical states of light which are intermediate between single-mode and two-mode squeezed states. They may be prepared by coherently mixing two single-mode squeezed states at a beam-splitter or via a frequency converter. When equally squeezed single-mode squeezed states are incident on a 50/50 beam-splitter the output will range between a two-mode squeezed state and two single-mode squeezed states as the phase of the input squeezed light is varied. This behaviour is reflected when the properties of such states are investigated.  相似文献   

14.
Based on the two-mode squeezing operator which is the quantum version of the symplectic transformation, we find that the corresponding squeezed two-mode number state is just a two-variable Hermite polynomial excited state, which possesses well-behaved features, e.g. its Wigner function is a direct product of two Laguerre polynomials; its Husimi function, a Gaussian broaden version of the Wigner function, is related to two-variable Hermite polynomials. Moreover, its quantum statistical features, such as squeezing properties and the inter-mode photon bunching, are discussed.  相似文献   

15.
We discuss the generation and evolution of entanglement in a four-level laser with a subthreshold nondegenerate parametric oscillator. The entanglement properties of the two-mode light generated by this scheme is studied. We show that the light produced by the present system is strongly entangled with time evolution. Especially, with the help of the parametric oscillator, the high intensity of the entangled light between the two-mode cavity can be achieved.  相似文献   

16.
This topical review provides an overview of the key theoretical features of Bose–Einstein condensates (BECs) in cold atomic gases at near zero temperature in the situation where all the bosons occupy at most two single particle states or modes. This situation applies to single-component BECs in double well trap potentials and to two-component BEC in single well trap potentials, such as occur when BEC are used in interferometry experiments. The Hamiltonian is introduced in terms of field operators and mode expansions are restricted to a total of two modes. Spin operators and their eigenstates are introduced as the fundamental basis states for describing the two-mode N boson quantum system. The spin states have a macroscopic angular momentum quantum number of N/2 and the magnetic quantum number k specifies the relative number of bosons in the two modes. The treatment presented involves an extensive use of angular momentum theory, including unitary rotation operators. Important states of the two-mode system such as binomial or coherent states, relative phase eigenstates are discussed. Boson position measurements are specified via quantum correlation functions, and the use of these functions in describing coherence properties, interference patterns and fragmentation effects in BECs is presented. The Bloch vector is defined and related to the quantum correlation functions, with quantum fluctuations of the Bloch vector being treated in terms of the covariance matrix. Applications to important two-mode states are made. Spin squeezing is discussed. Based on applying variational principles, the general dynamical behaviour of the two-mode BEC is determined via generalised Gross–Pitaevskii equations for the modes and matrix mechanics equations for the probability amplitudes of the relative number basis states, the mode and amplitude equations being coupled and self-consistent. The single mode equations are also presented. The Hamiltonian is written in terms of the spin operators and the Josephson Hamiltonian obtained as a simplification in which the dynamical behaviour of the mode functions is ignored – for the one-component case the mode functions are also required to be localised and separate. Coefficients in the Josephson Hamiltonian describe tunneling/intercomponent coupling, asymmetry and collisions and these are defined via integrals involving the mode functions. The Josephson model involves using the Josephson Hamiltonian to give simple predictions of the energy states and dynamical behaviour of the two-mode system, dynamical effects on the mode functions being ignored. The three regimes – Rabi, Josephson and Fock are described, and the energy states obtained for the Fock and Rabi regimes. Dynamical behaviour treatments based on the Josephson model are outlined. In the situation where all bosons are in the same single particle state, semi-classical Bloch equations are derived and their solutions given in terms of elliptic functions. The quantum regime is treated using matrix mechanics equations for the probability amplitudes. Two representative applications of the Josephson model dynamics are treated, with graphs showing the results of numerical work being displayed. The first is in describing Heisenberg limited BEC interferometry for a single-component BEC in a double well, the treatment showing collapses and revivals in the probability distribution for the relative phase. The second treats Ramsey interferometry for a two-component BEC in a single well, the study revealing that oscillations of the Bloch vector collapse and revive, with the Bloch vector's departure from the Bloch sphere during the collapse period revealing that the BEC has fragmented. In both cases collisions cause the dephasing effects that result in the collapse, revival phenomena. The review ends with a brief outline of phase space and other approaches that extend the treatment beyond the two-mode theory, enabling decoherence effects associated with bosons in non-condensate modes to be studied. A summary of the review contents is included. Detailed mathematical derivations are included in several appendices, available as online supplementary material.  相似文献   

17.
In this paper, we analyzed squeezing in the information entropy, quantum state fidelity, and qubit-qubit entanglement in a time-dependent system. The proposed model consists of two qubits that interact with a two-mode electromagnetic field under the dissipation effect. An analytical solution is calculated by considering the constants for the equations of motion. The effect of the general form of the time-dependent for qubit-field coupling and the dissipation term on the temporal behavior of the qubit-qubit entanglement, quantum state fidelity, entropy, and variance squeezing are examined. It is shown that the intervals of entanglement caused more squeezing for the case of considering the time-dependent parameters. Additionally, the entanglement between the qubits became more substantial for the case of time dependence. Fidelity and negativity rapidly reached the minimum values by increasing the effect of the dissipation parameter. Moreover, the amount of variance squeezing and the amplitude of the oscillations decreased considerably when the time dependence increased, but the fluctuations increased substantially. We show the relation between entropy and variance squeezing in the presence and absence of the dissipation parameter during the interaction period. This result enables new parameters to control the degree of entanglement and squeezing, especially in quantum communication.  相似文献   

18.
The entanglement between Gaussian entangled states can be increased by non-Gaussian operations. We design a new scheme, named coherent photon addition, which can coherently add one photon generated by a spontaneous parametric down-conversation process to Gaussian quadrature-entangled light pulses created by a non-degenerate optical parametric amplifier. This operation can increase the entanglement of input two-mode Gaussian states as an entanglement distillation, and provides us with a new method of non-Gaussian operation. This scheme can also help us to study the decoherence of adding one- to two-mode Gaussian states from coherent photon addition to normal photon addition.  相似文献   

19.
Abstract

One introduces the phase state as a nonlinear coherent state. Some of its properties, such as the sub-Poissonian statistics, the squeezing effects, the phase properties in the Pegg-Barnett formalism and the quasiprobability function of the nonlinear coherent states, are calculated and discussed in this paper. The results show that the phase states are squeezed.  相似文献   

20.
We study Bell's theorem for two-mode squeezed state with realizable operations in experiment. For the purpose, we suggest the Bell–CHSH operator with photon presence measurement using symplectic operation and displacement. The symplectic operation can be decomposed into phase shifter and squeezing operation in single mode. These operations are realizable experimentally in quantum optics. As a result, we obtain a larger degree of quantum nonlocality by local symplectic operation and displacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号