首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 81 毫秒
1.
利用电纺制备直径为(2.69±0.63)μm,孔径大小为150 nm×120 nm聚乳酸(PLLA)纳米孔超细纤维。以丙烯酸(AA)为单体,N,N-亚甲基双丙烯酰胺为交联剂,过硫酸钾为引发剂,通过自由基聚合制备聚丙烯酸(PAA)水凝胶。将PLLA纳米孔超细纤维浸泡在上述体系中,通过原位聚合制备PAA/PLLA复合水凝胶,并研究m(AA)∶m(PLLA)对复合水凝胶形貌的影响。致孔剂聚乙二醇(PEG)加入,明显提高纤维孔隙率。与PAA水凝胶相比,PAA/PLLA复合水凝胶pH响应时间大大缩短,且拉伸强度由1.9 MPa增加到5.2 MPa,弹性模量从90.4 MPa增加到108.2 MPa。  相似文献   

2.
采用聚乙二醇、聚乙烯吡咯烷酮、CaCO3等不同材料作致孔剂合成多孔聚丙烯酰胺(PAAm)水凝胶,以图提高凝胶的溶胀响应速率。研究结果表明,采用PEG20000、PVP-K30,PEG600作致孔剂对PAAm凝胶响应速率影响不大。用PEG300作致孔剂,凝胶溶胀率随致孔剂浓度的升高,先升高后又逐渐降低,当其浓度为0.045mol/L时,溶胀3.5h,凝胶室温溶胀率提高了15.2%。采用CaCO3作致孔剂可在一定程度上加快凝胶响应速率,随着CaCO3用量的增加,溶胀率先升高后又有所降低。当CaCO3/AAM为5.6%(质量分数)时,溶胀3h后,溶胀率提高了40.3%。  相似文献   

3.
以N aC l晶体为致孔剂,合成了具有pH及温度双重敏感特性的海藻酸钠接枝甲基丙烯酸梳状多孔水凝胶。利用扫描电镜观察到该水凝胶具有特殊的孔洞结构,孔径大小为100μm左右。不同pH值及温度下的溶胀和溶胀-收缩动力学研究表明,该水凝胶具有较快的响应速率,在5 m in内可以达到溶胀平衡,而且溶胀收缩行为有较好的重复性。该水凝胶的最低临界溶液温度(LCST)为30℃左右。比较含孔不同的凝胶膜的响应曲线,发现含孔越多,溶胀率和凝胶体积变化量越大,溶胀收缩响应速率越快。  相似文献   

4.
以丙烯酸、丙烯酰胺为单体,过硫酸钾为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,利用水溶液聚合法和乙醇致孔法制备了聚丙烯酰胺/丙烯酸钾互穿网络多孔水凝胶.采用红外光谱(FTIR)和扫描电镜(SEM)等分析技术对水凝胶进行了表征,研究了水凝胶的溶胀行为和吸0.9%NaCl(质量分数,下同)盐水的能力.实验结果表明,该多孔水凝胶具有较快的吸水速率,其最高吸水倍率可达3600g/g,吸0.9%NaCl盐水倍率最大可达120g/g,凝胶粉末能在8min内达到溶胀平衡.  相似文献   

5.
以硝酸铈铵为引发剂,将具有pH响应的聚丙烯酸(PAA)接枝到电纺纤维素(Cell)纳米纤维膜上,制备了pH响应纤维素接枝聚丙烯酸(Cell-g-PAA)纳米纤维水凝胶。研究了接枝单体丙烯酸(N)与纤维素(c)质量比对Cell-g-PAA形貌、接枝率和溶胀性的影响。结果表明:m(N)∶m(c)值从5增加到10,接枝率从11%急剧增加到28%,然后趋于平稳;而m(N)∶m(c)值从5增加到15,溶胀率从(15.2±1.6)g/g增加到(46.1±4.9)g/g,然后下降。同时,研究了pH值和离子强度对水凝胶溶胀率的影响,pH值从2.2增加到7.8时,水凝胶的溶胀率从(31.3±2.5)g/g增加到(42.7±3.2)g/g,pH值进一步增大,溶胀率降低;溶液中离子强度从0mol/L增加到0.15mol/L,水凝胶溶胀率从(36.2±2.6)g/g降低到(21.4±1.4)g/g。本研究为制备快速响应pH水凝胶提供了一种新方法。  相似文献   

6.
孙晓锋  景占鑫  王海洪  王广征 《功能材料》2012,43(18):2500-2504
以聚乙二醇(PEG)为致孔剂,利用自由基聚合法制备了具有多孔结构的半纤维素接枝共聚丙烯酰胺水凝胶,分别用FT-IR和SEM对水凝胶的结构和表面形态进行了分析;研究了水凝胶的pH值敏感性以及单体比例、PEG用量、PEG分子量和交联剂对溶胀率的影响;最后,以亚甲基蓝为模型药物研究了该水凝胶对药物的释放性能。实验结果表明,PEG为致孔剂,没有参与聚合反应;该水凝胶具有多孔结构以及优良的pH值敏感性,能够实现药物的控制释放,有望成为一种良好的药物载体。  相似文献   

7.
通过可逆加成-断裂链转移聚合法(RAFT)一步反应成功合成了温度和pH双重敏感的聚乙二醇甲基丙烯酸酯(OEGMA)-co-丙烯酸梳形/多孔智能水凝胶。采用扫描电镜(SEM)对水凝胶结构进行表征,结果表明,随着加入的致孔剂聚乙二醇(PEG)分子量越大、加入量越多,所得多孔水凝胶的孔径就越大、孔的数目就越多。对水凝胶进行溶胀测试,结果表明,在RAFT试剂的调控下所得凝胶的结构更均匀,因此所得凝胶的溶胀性能较好;经PEG致孔后的水凝胶,其溶胀程度和响应速率相对于致孔前都有所提高;此外OEGMA侧链PEG的长度和交联剂中间链段的长度都对凝胶的溶胀性能有显著的影响。  相似文献   

8.
壳聚糖(CS)和糠醛为原料构筑了壳聚糖水凝胶(CS-F),利用红外光谱、X射线衍射光谱进行结构表征,并对CS-F水凝胶的pH响应性能、溶胀性能、流变学性质和自愈合能力进行研究。实验结果表明,糠醛通过亚胺键接枝到壳聚糖分子链上并发生超分子层状有序排布,形成三维交联网络结构;基于动态亚胺键和壳聚糖游离氨基,CS-F-0.7(n(-NH2)∶n(-CHO)=1∶0.7)水凝胶的溶胶-凝胶相转变、自愈合能力和溶胀性能均展现出pH响应性,CS-F-1.0(n(-NH2)∶n(-CHO)=1∶1)水凝胶失去自愈合能力;酸性介质下,CS-F-0.7干凝胶展现即时自愈合能力。2种生物材料构筑的具有pH响应的自愈合水凝胶,在药物输送、组织工程等领域有着潜在的应用前景。  相似文献   

9.
利用醛基化海藻酸钠与酰肼基聚乙二醇反应,获得动态共价键交联的海藻酸水凝胶。通过核磁共振光谱、红外光谱、扫描电镜对水凝胶的结构进行了表征,采用流变仪测定水凝胶的流变性能。结果表明该水凝胶具有较高的弹性和强度,并且随pH值的变化,可以实现溶胶-凝胶转化,即在中性条件下形成凝胶,在酸性条件下则变为溶胶。基于这种优异的性能,再加上优良的生物相容性,将为此类材料在药学生物领域的应用打下坚实的基础。  相似文献   

10.
壳聚糖接枝丙烯酸/丙烯酰胺水凝胶的制备及性能   总被引:4,自引:0,他引:4  
以丙烯酸(AA)、丙烯酰胺(AM)两种单体同时对壳聚糖(CTS)进行接枝改性,合成了具有环境响应性的壳聚糖水凝胶,讨论了各合成因素对凝胶溶胀性能的影响及凝胶对pH值、离子强度和温度的响应性。结果表明,当反应时间为2h~2.5 h、单体与CTS质量比为8∶1、反应温度在60℃左右、引发剂用量为0.35%(占单体和CTS总量的百分比,下同)、交联剂用量为0.125%时,制得的水凝胶最高溶胀度可达224 g/g,而且该凝胶同时具有pH值、离子强度和温度敏感性。  相似文献   

11.
郭莉  景欢旺 《化工新型材料》2012,40(4):115-118,137
采用可逆加成断裂链转移自由基聚合方法,成功地制备了两亲嵌段共聚物聚甲基丙烯酸甲酯-b-聚丙烯酸-co-聚异丙基丙烯酰胺(PMMA-b-(PAA-co-PNIPAM)。利用傅立叶红外光谱、核磁共振和透射电镜研究了共聚物的结构特征;用GPC测定了其分子量和分子量分布。透射电镜、激光粒度分析仪和动态光散射结果表明嵌段共聚物在水溶液中能够自组装形成直径为200nm的胶束颗粒。通过紫外-可见分光光度计和差示扫描量热法测得了不同pH值下嵌段共聚物的低临界溶解温度(LCST)。经过接枝后的嵌段共聚物的LCST比PNIPAM要高,且随着pH值的降低,聚合物的LCST随之降低。聚合物的LCST可以通过AA链段与NIPAM链段的比例、温度、pH值来控制。  相似文献   

12.
Nano-hydroxyapatite (n-HA) was used to make a new hydrogel biocomposite with poly(vinyl alcohol) (PVA) by a unique technique. Fourier transform infrared absorption spectra (IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TG) and burning test were used to test the physical and chemical characteristics of the composite. Chemical binding between inorganic n-HA and poly(vinyl alcohol) was investigated and discussed. The results showed that the composite had good thermal stability and homogeneity. The n-HA crystals were uniformly distributed in the polymer matrix. The improved n-HA/PVA hydrogel could be used as an artificial articular cartilage, showing a promoting prospect.  相似文献   

13.
通过化学发泡-冷冻干燥-粒子滤出复合法制备聚乳酸(PLLA)大孔支架, 然后在大孔内以海藻酸钠(SA)、碳酸钙、葡萄糖酸内酯(GDL)为原料, 通过原位相转变制备海藻酸钙水凝胶/聚乳酸复合材料(CA/PLLA); 分别利用SEM、压缩强度测试和细胞培养对CA/PLLA支架的形貌、力学性能及生物相容性进行了研究。结果表明: PLLA具有直径小于2 mm、孔道相互连通的孔洞, 且在大孔中能够形成均匀的CA。CA/PLLA复合材料的压缩强度(2.74 MPa)远大于单一的海藻酸钙水凝胶的压缩强度(0.10 MPa)。在CA/PLLA复合支架中, 软骨细胞呈簇状圆形生长状态, 与其在天然软骨陷窝里生长状态一致。这种软硬结合、天然与合成高分子杂化的CA/PLLA复合材料的力学强度和生物相容性同时得到提高, 可进一步作为骨和软骨修复材料研究。  相似文献   

14.
pH敏感水凝胶PMAA对布洛芬的控制释放   总被引:1,自引:1,他引:1  
采用自由基聚合法制备了pH敏感水凝胶聚甲基丙烯酸(PMAA),研究了该凝胶在不同pH值溶液中的溶胀性能.结果表明,PMAA凝胶在pH=2时的溶胀率仅为2.6,而在pH=10时的溶胀率达15.8,具有明显的pH敏感性能.以疏水性布洛芬为模型药物,研究了PMAA水凝胶作为药物载体对布洛芬的负载及释放性能,结果显示:PMAA...  相似文献   

15.
Transparent hydrogels were prepared by blending solutions of poly(vinyl alcohol-vinyl acetate) with either poly(acrylic acid) or poly(vinyl pyrrolidone) in the presence of glutaraldehyde as a crosslinking agent. The network obtained from the poly(vinyl pyrrolidone) system was subjected to various thermal treatments, the effects of which have been studied. Dynamic mechanical analysis was used to characterize the hydrogels and to establish the suitability of these blends for use in biomedical applications. The swelling behaviour was followed under dynamic loads as well as by mass difference. Different frequencies were used to study the dynamic properties of the hydrogel blends which showed an increase in storage modulus with increasing frequency. A comparison of modulus values obtained dynamically were in agreement with data obtained mechanically in tension.This paper was accepted for publication after the 1995 Conference of the European Society of Biomaterials. Oporto, Portugal, 10–13 September.  相似文献   

16.
17.
聚四氟乙烯的改性及应用   总被引:24,自引:1,他引:23  
本文从聚四氟乙烯的组成、结构及物理化学特性、成型加工技术等方面说明了聚四氟乙烯改性的必要性 ,并对其表面改性、填充改性及共混改性作了较详细的介绍。认为聚四氟乙烯薄膜复合技术及改性技术将是未来聚四氟乙烯的主要发展方向 ,最后对聚四氟乙烯及其改性制品的应用作了介绍。  相似文献   

18.
研究了制备聚乙烯醇(PVA)/羟基磷灰石(HA)复合水凝胶的溶胶法原位复合技术,将无机纳米粉体的溶胶-凝胶合成反应引入高分子基体。对该法制备的复合水凝胶的相结构、微观形貌和拉伸强度进行了分析,并与物理共混法复合水凝胶加以比较。结果表明,溶胶法原位复合可以在富水基体中制备晶相的HA粉体,且粉体粒径小于200nm,分散良好,复合材料的力学性能也有进一步改善。  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号