首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
<正>能量密度的提升是锂离子电池领域的研究重点,而正极材料是决定锂离子电池能量密度的关键。镍锰酸锂材料是一种高电压的正极材料,具有高能量密度和良好的倍率性能;然而,其自身的高工作电压会显著加速电极材料表面的副反应,严重损害电极材料的结构稳定性和长循环性能,限制了它在高比能动力电池  相似文献   

2.
高能量密度的电极活性材料是提高电芯能量密度的关键。提高锂离子电池能量密度的途径主要包括开发高比容量正负极材料和高放电电压平台正极材料。本研究综述了几种典型的具有高能量密度锂离子电池正、负极材料的最新研究进展,包括多电子反应、富锂、聚阴离子和镍锰酸锂正极材料以及硬碳、硅基和锡基负极材料,介绍了各种材料的特点和电化学性能,重点阐述了制备这些材料的典型方法和进展,并展望了高能量密度锂离子电池的发展方向和应用前景。  相似文献   

3.
为了满足储能系统和电动汽车市场对于高能量密度和快充的需求,兼具高能量和高功率密度的锂离子电池得到了广泛的关注。厚电极结构设计能够显著提高电池的能量密度并降低成本,且能与各种电极材料相兼容,是发展高能量密度锂离子电池的研究热点之一。厚电极通常面临着力学性能差和反应动力学慢等问题,因此构建力学性能良好和完善的锂离子及电子传输网络的厚电极至关重要。本文首先分析了厚电极的电化学特性和关键科学问题,然后梳理了目前构建厚电极的各种策略及其优势,最后探讨了厚电极的设计原则和发展方向。  相似文献   

4.
随着智能手机和笔记本电脑等移动互联网设备的普及,电动自行车和电动摩托车等电动交通工具的推广,以及无人机和太空探测器等航空航天技术的发展,锂离子电池性能面临着更高的发展要求,而体积小、能量密度高已成为高性能锂离子电池的研究方向。本文将分别从结构及工艺设计、正负极配比的优化、高容量负极材料的开发、高电压正极材料及适配电解液等方面,对高能量密度锂离子电池进行概述。  相似文献   

5.
锂离子电池是目前应用最为广泛的二次电池,但其能量密度仍无法满足人们的要求。锂离子电池的能量密度很大程度上取决于所用的电极材料,因此,探索性能优越的负极材料是锂离子电池研究的重要课题。综述了石墨烯基纳米复合材料作为锂离子电池负极的研究进展,分析了单一石墨烯、二元及三元石墨烯基纳米复合材料的结构对储锂性能的影响,指出了未来的研究方向。  相似文献   

6.
罗政  梁杰铬  袁斌 《材料导报》2018,32(Z1):16-20, 27
金属基负极材料具有超高的理论容量,是新一代锂离子二次电池理想的负极材料。但是,金属基负极材料在充放电过程中会产生严重的体积膨胀,从而导致负极材料的粉化和脱落,使其循环性能迅速恶化。采用多孔集流体能够充分利用三维连通的孔隙和高的比表面积来显著提高锂离子二次电池的循环性能和能量密度,是缓解金属基负极材料体积膨胀的有效方法之一。本文总结了近年来微米多孔、纳米多孔和双尺度多孔集流体的制备方法及其在锂离子二次电池中的应用。  相似文献   

7.
随着低碳环保的生活方式不断深入人心,人们对能源储存器件的需求日益增加。锂离子电池由于具有较高的工作电压、较高的能量密度和良好的循环寿命,逐渐占领了二次能源储存市场。当然,锂离子电池也面临着自身的问题,如锂资源储量少、开采难度大而导致的锂离子电池成本高。钠离子电池具有与锂离子电池相似的电化学性质,且钠盐资源丰富,近年来受到了研究者们的广泛关注。在整个电池中,电极材料的作用尤为重要,决定了整个电池的循环寿命。铁基电极材料具有丰富的原材料资源、价格低廉、安全无污染,因此成为了最合适的一类电极材料。然而,铁基电极材料的电化学性能还有待进一步改善。通过设计合适的纳米结构以及发展简易的金属有机框架化合物衍生的方法,制备了一系列铁基电极材料,并用于锂、钠离子电池,取得了不错的电化学性能。综述了近年来研究者们和作者课题组制备的铁基电极材料在锂、钠离子电池上的研究进展。  相似文献   

8.
刘文勇  王楠 《包装学报》2023,15(2):78-93
随着新能源行业的快速兴起, 高性能锂离子电池成为当下的研究热点。作为锂离子电池的重要组成部分之一,隔膜不仅决定了电池的内部结构和内阻,而且对电池的容量、循环和安全性能起着至关重要的作用。纤维素材料来源丰富、环境友好,由纤维素制备的隔膜具有高孔隙率、高比表面积和高离子电导率,有希望成为传统聚烯烃隔膜的优良替代品。概括了不同种类的纤维素在锂离子电池膈膜中的应用进展,对纤维素膈膜的制备技术及其性能进行了全面的讨论和总结,最后,提出了纤维素锂离子电池隔膜领域有待解决的问题以及纤维素在隔膜领域的发展前景。  相似文献   

9.
随着电动汽车的快速发展,人们对动力电池的能量密度和寿命等电化学性能有了更高的要求.正负极活性材料的改性和修饰、新型导电剂和黏结剂的应用以及电极组分的优化设计,能够有效提升锂离子电池的循环性能和倍率性能.然而,传统电极因其单层结构本身存在的活性涂层表面结构不稳定,内部存在极化现象等问题,在一定程度上限制了高负载电极在锂离子电池中性能的发挥.因此改善传统电极中的单层结构,是锂离子电池研究的重要方向.本文通过归纳分析多层复合电极结构的相关研究,总结出解决单层电极结构本身问题的三种方案,分别为增加电极表面结构稳定性,增加电极表面导电性以及调整电极内部组分分布增加电极内部结构稳定性.这三种方案分别具备各自的优势,通过整合分析其特点,本文对目前多层复合电极结构的研究现状进行了总结,为锂离子电池及其他体系电池的电极设计提供了新的方向和思路.  相似文献   

10.
凭借着钠资源储量丰富和成本优势,钠离子电池在电化学储能领域有望成为锂离子电池的重要补充。作为钠离子电池负极材料,炭及其复合材料可以通过合理的结构设计和组分调控获得优异的储钠性能。随着可穿戴电子器件日益普及,人们对电极提出了更高的性能要求。自支撑电极无需使用电化学惰性的黏结剂和导电添加剂等组分,有利于提升电池体系能量密度。本文总结了近年来钠离子电池用自支撑炭基电极材料的最新研究进展,包括碳纳米纤维、碳纳米管、石墨烯及其复合材料,从基底有无的角度详细综述并讨论了自支撑炭基负极的制备策略及其电化学性能,最后对钠离子电池用自支撑炭基负极材料的未来挑战和发展进行了展望。  相似文献   

11.
The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD-based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium-ion batteries, lithium–sulfur batteries, sodium-ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD-based electrode materials are discussed. Furthermore, the applications of layered TMD-based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed.  相似文献   

12.
随着便携式、可穿戴电子器件的迅速发展,柔性储能器件的研究逐渐转向微型化、轻柔化和智能化等方向。同时人们对器件的能量密度、功率密度和力学性能有了更高的要求。电极材料作为柔性储能器件的核心部分,是决定器件性能的关键。柔性储能电子器件的发展,又迫切需要新型电池技术和快速、低成本且可精准控制其微结构的制备方法。因此,柔性锂/钠离子电池、柔性锂硫电池、柔性锌空电池等新型储能器件的研发成为目前学术界研究的热点。本文论述了近年来柔性储能电池电极的研究现状,着重对柔性电极材料的设计(独立柔性电极和柔性基底电极)、不同维度柔性电极材料的制备工艺(一维材料、二维材料和三维材料)和柔性储能电极的应用(柔性锂/钠离子电池、柔性锂硫电池、柔性锌空电池)进行对比分析,并对电极材料的结构特性和电化学性能进行了讨论。最后,指出了柔性储能器件目前所面临的问题,并针对此类问题展望了柔性储能器件未来的重点在于新型固态电解质的研发、器件结构的合理设计及封装技术的不断优化。  相似文献   

13.
在能源危机与环境问题日益凸显的背景下,电化学储能技术得到了迅速发展。在“超越锂”储能领域的竞争者中,锂硫电池(Li-S)因其具有高理论比容量、高质量能量密度并且环境友好、价格低廉等优点,成为最有前途的新储能技术。但是,锂硫电池的发展仍存在一些瓶颈问题需要解决,例如正极材料导电性能差、多硫化物穿梭效应及在充放电过程中电极体积膨胀等。作为锂硫电池的关键组成部分,电极和隔膜材料的设计和制备对解决这些问题及电池整体性能提升起到了重要的作用。金属有机骨架(MOFs)及衍生的复合材料作为锂硫电池电极或隔膜修饰材料,具有质量轻、电子和离子传导性好、孔道丰富和活性位点均匀分布等优势。此外,这类复合材料还具备形貌和组分可控、来源丰富和孔径可调等特性,从而便于机制研究。本文全面介绍了锂硫电池组成、工作原理并综述了近几年MOFs及衍生复合材料在锂硫电池中的研究进展,重点讨论了其在正极材料和隔膜材料中的应用,并对未来该材料在锂硫电池研究方向上的前景和突破进行了展望。   相似文献   

14.
The key to develop high specific energy rechargeable batteries is development of new electrode materials.The existing electrode materials still have many problems: the shuttle effect and poor conductivity of the sulfur cathode,the inevitable volume expansion of the silicon anode and the lithium dendrite of the lithium metal anode that cause short circuits,etc.Nanofibers,as active electrical materials,conductive additives and electrode bodies,can play multiple roles in electrode design.More interestingly,nanofibers can be functionalized to obtain better controllable properties (i.e.,electrolyte affinity,pore size distribution and surface electronic structure),thereby further enhancing electrochemical performance.In this article,the latest research progress in electrode design based on nanofibers is reviewed,including processing methods,structure,morphology and electrochemical performance.The key problems affecting the electrochemical performance of the electrode are also discussed,such as the preparation process,atomic structure,electrical conductivity,surface area and pore distribution of nanofibers,to provide reference points for nanofibers in excellent electrode design.  相似文献   

15.
With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium-ion batteries, zinc-ion batteries, zinc–air batteries, and lithium–air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed.  相似文献   

16.
生物模板法合成锂离子电池电极材料研究进展   总被引:1,自引:1,他引:0  
锂离子电池是一类极具潜力的新型二次化学储能器件,被广泛应用于便携式电子设备、电动交通工具和智能电网等领域。高性能电极材料的设计和合成是获得高能量密度、长循环寿命、高安全性锂离子电池的关键。文章针对锂离子电池电极材料存在制备工艺复杂、结构难以控制、活性物质利用率低、循环稳定性和倍率性能差等问题,从生物资源高效利用角度出发,结合生物材料尺寸均匀、形态多变、结构精密、环境友好等优点,综述了生物模板法合成锂离子电池电极材料的研究进展,并对该领域的发展方向进行了展望。  相似文献   

17.
The energy crisis and environmental pollution require the advancement of large-scale energy storage techniques. Among the various commercialized technologies, batteries have attracted enormous attention due to their relatively high energy density and long cycle life. Nevertheless, the limited supply and uneven distribution of lithium minerals, as well as their high cost, has greatly hindered the application of lithium-ion batteries in large-scale energy storage. Therefore, building next-generation alternative rechargeable batteries that feature low cost, long service life, and high safety is of the utmost importance. Over the past several years, we have witnessed many successful research outcomes for sodium and potassium ion batteries (SIBs and PIBs) in regard to electrode and electrolyte materials. In this Perspective, we summarize the current developments on SIBs/PIBs and their challenges when facing practical applications, including their cost, energy density, ion diffusivity in solids/electrolytes/interphases, cycle life, and safety concerns. Furthermore, we provide an overview of strategies to overcome the remaining challenges for achieving better electrochemical performance. Finally, we outline several possible directions for the future development of these two battery chemistries, with the hope of aiding the transition from the laboratory to next-generation practical applications for SIBs/PIBs batteries in grid-scale energy storage.  相似文献   

18.
梁兴  高国华 《材料导报》2015,29(13):1-11, 33
V2O5具有独特的层状结构,适合于锂离子的存储,与传统的锰酸锂、钴酸锂、磷酸铁锂等阴极材料相比,表现出高的理论比容量和功率密度,作为锂离子电池阴极材料备受青睐。但它自身的结构不稳定、电导率低,导致实际比容量远低于理论值,且循环稳定性不能长期维持。正是由于这些制约因素,V2O5作锂离子电池阴极材料还有很大的研究价值。而利用各种制备方法将V2O5制备成具有各种纳米结构的材料,如一维的纳米线、纳米管等,二维的纳米片,三维的纳米空心球、纳米花等,改善材料固有的形貌结构,增大比表面积,增强锂离子在电极材料中的嵌入/脱出性能,提高储锂能力和比容量,同时通过掺杂改性等方法增强材料的导电性和循环稳定性,使V2O5作为锂离子电池阴极材料表现出优异的电化学性能成为可能。介绍了V2O5的晶体结构及其作为电极材料的纳米结构,以及不同的纳米结构对电极材料电化学性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号