首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以三(2-羟乙基)异氰尿酸酯(THEIC)和对苯二甲酸(PTA)为原料合成三(2-羟乙基)异氰尿酸对苯二甲酸酯(T-ester),将T-ester与聚磷酸铵(APP)复配形成膨胀型阻燃剂(IFR)。将IFR与抗熔滴剂聚四氟乙烯(PTFE)、含磷聚对苯二甲酸乙二醇酯(FRPET)按不同比例熔融共混制备阻燃抗熔滴聚酯共混物。通过差示扫描量热(DSC)、热重(TG)、极限氧指数(LOI)、水平燃烧、锥形量热测试及流变测试表征系列共混物的性能与结构变化。研究表明,IFR和PTFE共同作用于FRPET,在促进成炭方面,具有协同作用且PTFE具有明显减弱熔滴的作用。IFR和PTFE质量比为1∶2的FRPET/IFR/PTFE共混物LOI为30%,1min内熔滴数为21滴,总燃烧释放热和总烟释放量明显降低。  相似文献   

2.
以三(2-羟乙基)异氰尿酸酯(THEIC)和对苯二甲酸(PTA)为原料合成三(2-羟乙基)异氰尿酸对苯二甲酸酯(T-ester),并利用红外光谱和核磁共振氢谱对其结构进行表征。将T-ester(同时具有炭源和气源的作用)与聚磷酸铵(APP,酸源)复配后形成一种新型膨胀型阻燃剂(IFR),应用于含磷阻燃聚酯(FRPET)的阻燃性能研究中。采用极限氧指数(LOI)、熔滴测试及锥形量热表征其燃烧性能,热重测试表征其热稳定性。研究发现,在固定添加量20%的情况下,FRPET/IFR17-3的阻燃效果最佳,其700℃的残炭量能增加到23.2%,LOI提高到32%~33%,1min内熔滴数目也降至28滴。此外,通过观察锥形量热测试后的样品表面,可以发现连续膨胀的炭层。  相似文献   

3.
以阻燃剂2-羧乙基苯基次磷酸(CEPPA)作为第三单体采用共缩聚法制备了高磷含量的阻燃聚酯,然后通过熔融共混技术制备了聚对苯二甲酸乙二醇酯(PET)/阻燃聚酯共混物。通过红外光谱、核磁、差示量热、扫描电镜(SEM)、极限氧指数及元素分析对高磷含量的阻燃聚酯和PET/阻燃聚酯共混物的结构及性能进行表征。结果表明:大多数CEPPA以无规共聚形式分布在大分子链中,少部分以短嵌段形式存在于大分子链中。SEM结果表明:PET与高磷含量阻燃聚酯之间有很好的相容性。当磷含量达到6mg/g时,PET/阻燃聚酯共混物的极限氧指数超过28%,具有很好的阻燃性。  相似文献   

4.
以2-羧乙基苯基次磷酸(CEPPA)为第三单体,通过原位聚合法制备磷系阻燃共聚酯(FRPET)/磷酸盐玻璃(P-glass)纳米复合材料,并通过元素分析、DSC、TGA、极限氧指数、垂直燃烧等方法对其结构和性能进行了研究。结果表明:在原位聚合过程中,P-glass能在基体内呈纳米尺寸均匀分散,并与阻燃共聚酯分子链发生相互作用。P-glass的原位添加有利于提高材料的耐燃性并抑制其熔融滴落现象,特性黏度达0.64dL/g、FRPET/P-glass磷含量为8.194mg/g、Pglass含量1%以上时,FRPET/P-glass垂直燃烧性能级别达到FV-0级,极限氧指数达30.9%。  相似文献   

5.
采用三氯氧磷、季戊四醇、对苯二胺和氨基硅油成功制备出新型磷氮硅一体化膨胀型阻燃剂(P-N-S-i IFR),通过极限氧指数、锥形燃烧和热失重测试对比研究了常规磷氮膨胀型阻燃剂(P-N-IFR)与P-N-S-i IFR对PP的阻燃效果。结果表明,含有P-N-IFR的PP阻燃体系的极限氧指数、平均热释放速率和残炭率分别为30.7、240 kW/m2和8.7%,含30%的P-N-S-i IFR的PP阻燃体系的3种参数分别为34.0、94kW/m2和15.2%,表明P-N-S-i IFR对PP阻燃和提高热稳定性的效果优于P-N-IFR对PP阻燃和增强热稳定性的效果。通过X射线衍射分析了含有两种阻燃剂的PP残炭结构,探讨了P-N-S-i IFR的阻燃机理。  相似文献   

6.
合成了丙烯酸(10-氧-10-氢-9-氧杂-10-磷杂菲-10-基)甲酯(DOPO-CH2O-AA)单体,并通过FTIR、1 H-NMR确认其结构。将DOPO-CH2O-AA和3-甲基丙烯酰氧基丙基三甲氧基硅(KH-570)作为阻燃单元、苯乙烯作为增容单元通过自由基本体聚合制备了聚合型磷-硅阻燃剂(PFR)。并研究了DOPOCH2O-AA和KH-570共聚比例对PFR的热稳定性和分解成炭能力的影响,确定了最佳的单体比例为n(DOPO-CH2O-AA)/n(KH-570)=6/4。将20%~30%(质量分数)的PFR用于聚苯乙烯阻燃改性,燃烧与热重分析结果符合凝聚相阻燃的特点。其中,当使用30%共聚组成为n(DOPO-CH2O-AA)/n(KH-570)/n(St)=48/32/20的阻燃剂阻燃聚苯乙烯时,极限氧指数(LOI)为26.8%,无缺口冲击强度为0.92kJ/m2;热重分析显示,阻燃后聚苯乙烯的起始分解温度在350~360℃,热分解后600℃残炭量高于20%。研究结果表明,PFR中磷-硅元素之间有明显的凝聚相协同阻燃作用。  相似文献   

7.
文中合成了反应型有机磷酸酯功能阻燃剂9,10-二氢-9-氧杂-10-磷杂菲-10-氧甲基丙烯酸酯(DOPOAA),并通过水相沉淀聚合制备了原位共聚改性的阻燃聚丙烯腈,利用红外光谱分析了阻燃聚丙烯腈链段组成,并通过与二乙基膦酸甲基丙烯酸酯(DEAMP)进行对比,详细研究了改性聚丙烯腈的热稳定性和燃烧行为。结果表明,芳环结构有机磷酸酯DOPOAA与单体丙烯腈的竞聚率较为接近;原位共聚改性的聚丙烯腈热稳定性与阻燃性能显著提升;较脂肪结构磷酸酯阻燃剂DEAMP,DOPOAA在气相中也起到了关键的阻燃作用,且在较低的磷含量时即可表现出优异的阻燃性能。当DOPOAA质量分数为15%时,改性聚丙烯腈第1阶段失重温度提高约30℃,热分解残炭量提高约30%,极限氧指数值可达25.1%,热释放速率峰值(pkHRR)降低至598.16 kW/m~2,总释放热(THR)下降为28.91 MJ/m~2,燃烧后的炭层表面致密、平滑,结构完整,阻燃性能优异。  相似文献   

8.
一种新型含硅阻燃剂的合成及在PC/ABS中的应用   总被引:1,自引:0,他引:1  
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、丙烯酸(AA)、N-β-胺乙基-γ胺丙基甲基二甲氧基硅烷(HD-103)和α,ω-二羟基二甲基硅烷(PDMS)为原料,合成出一种新型的集硅、磷、氮于一体的阻燃剂;表征了所合成的中间体及阻燃剂的结构;并将阻燃剂与PC/ABS共混,利用LOI和TGA考察了阻燃PC/ABS的阻燃性及热降解行为。  相似文献   

9.
综述了近年来环境友好阻燃PET的最新研究进展。分别从添加型和结构型两种阻燃剂进行阐述,其中添加型阻燃剂包括无机添加型阻燃剂(蒙脱土、金属氢氧化物、硼酸盐类以及多壁碳纳米管)和有机添加型阻燃剂(含磷的热致液晶、三磷腈派生物以及接枝阻燃基团的聚硅氧烷);结构型阻燃剂包括有机氧化膦类和次膦酸衍生物。并提出了未来阻燃聚酯的主要研究对象是共混阻燃聚酯的分散性和界面问题,从而提高阻燃PET的力学性能。  相似文献   

10.
一种新型无卤阻燃剂的合成及其在PC/ABS中的应用   总被引:1,自引:0,他引:1  
吴丹  韦平  江平开  仲含芳 《材料导报》2007,21(Z2):250-252
以9,10-二-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、丙烯酸(AA)、N-β-胺乙基-γ胺丙基甲基二甲氧基硅烷(HD-103)和α,ω-二羟基二甲基硅烷(PDMS)为原料,合成出一种新型的集硅、磷、氮于一体的阻燃剂;表征了所合成的中间体及阻燃剂的结构;并将阻燃剂与PC/ABS共混,利用LOI和TGA考察了阻燃PC/ABS的阻燃性及热降解行为.  相似文献   

11.
用锥形量热仪、TGA、LOI及UL94垂直燃烧研究了Novolac对MRP阻燃高抗冲聚苯乙烯(HIPS)性能的影响.结果表明,在MRP阻燃HIPS中添加适量的Novolac,可以使材料的阻燃性能满足使用要求,且随着Novolac用量的增加,材料的阻燃性能和热稳定性上升.  相似文献   

12.
针对纸张易燃的问题,基于钠基蒙脱土的吸水膨胀及钠离子交换特性,分别用钠基蒙脱土吸附尿素(UM)、磷酸二氢铵(ADP)和三聚氰胺(MEL)制成新型复合阻燃剂,并涂覆于纸张表面制备阻燃纸张。通过傅里叶变换红外光谱(FTIR)、热重分析(TGA)、垂直燃烧测试、力学性能测试等对阻燃纸张的微观结构、阻燃性能和力学性能进行分析。结果表明,相比于空白纸张,利用MMT-UM、MMT-ADP和MMT-MEL涂覆得到的阻燃纸张,其阻燃性能得到显著提升,热稳定性得到增强。且随阻燃剂用量的增加,制备的阻燃纸张的炭化长度明显变短,断后伸长率、撕裂强度和挺度等力学性能都有不同程度的提升。  相似文献   

13.
采用聚磷酸铵(APP)与不同比例三聚氰胺(MA)和三嗪成炭剂(CFA)复配对环氧树脂进行阻燃改性。系统研究了不同配比阻燃剂(总量保持40wt%)的加入对环氧树脂流变特性、固化行为、热机械性能、力学性能及阻燃性能的影响。将优化后的阻燃改性环氧树脂用于制备玻璃纤维增强环氧树脂复合材料(GFRC),对并其力学和阻燃性能进行了研究。结果表明,APP单独与MA或CFA复配改性环氧树脂并未表现出明显的协同阻燃效应,但它们组成的三元复配阻燃体系(30wt%APP-5wt%MA-5wt%CFA)具有良好的协同阻燃效应。相比未改性环氧树脂,APP-MA-CFA改性环氧树脂的极限氧指数(LOI)由18.0%提高到了50.2%,热释放峰值速率(PHRR)下降了84%,总热释放量(THR)下降了78%。树脂基体中加入阻燃剂后,GFRC的力学性能有所下降,尤其是层间剪切强度。同样地,基于APP-MA-CFA复配改性环氧树脂的GFRC表现出最佳阻燃性能,相比未改性的GFRC,其LOI值由22.8%提高到了66.0%,PHRR由354 kW/m2下降到93 kW/m2,THR由49.3 MJ/m2下降到22.8 MJ/m2。   相似文献   

14.
干法表面改性对无机复合阻燃剂填充EVA材料的影响   总被引:1,自引:0,他引:1  
王佼  郑水林 《中国粉体技术》2012,18(1):48-50,53
研究水镁石颗粒表面包覆水合氧化锌型无机复合阻燃剂的干法表面改性及其在乙烯-醋酸乙烯共聚物(EVA)中的应用性能,并对改性和阻燃机理进行初步分析。结果表明,经改性的阻燃剂填充的EVA材料的阻燃性能和力学性能均得到提高,特别是力学性能有较大幅度提高,材料的氧指数为38.0%,拉伸强度为12.2 MPa,断裂伸长率为360%。红外光谱分析表明,表面改性剂通过物理缠绕和化学键合的方式附着在氧化锌包覆水镁石颗粒的表面,改变了氧化锌包覆水镁石颗粒的表面性质,提高了与有机聚合物的相容性。阻燃剂的阻燃范围在300~500℃,EVA起到了非常有效的阻燃作用。  相似文献   

15.
以改性天然碳水化合物结合碱式硫酸镁晶须(MHSH)混杂纤维为协效剂,结合膨胀阻燃剂(IFR)制备了阻燃型聚丁二酸丁二醇酯(PBS)木纤维复合材料。利用极限氧指数和垂直燃烧测试研究了复合材料的阻燃性能,并采用TG/DTA-MS对复合材料的热解过程、吸放热量和热解燃烧气体产物进行了分析。结果表明,5%的木薯渣作为碳源代替PBS提高了材料的阻燃性能。IFR/木薯渣/MHSH阻燃剂能够有效提高PBS的燃烧初始温度,并缩小燃烧温度范围。阻燃材料燃烧时,首先是IFR受热分解产生不可燃气体氨气在材料表层形成第一层阻燃保护层;其次,材料迅速燃烧产生的炭层形成第二层阻燃保护层;最后,在高温段MHSH分解形成第三层协效阻燃保护层。因此,最终形成了由外层不可燃气体氨气和内层天然碳水化合物MHSH膨胀炭层构成的气-固阻燃屏障,从而有效地提高了复合材料的阻燃性能。  相似文献   

16.
PP/纳米SiO2/氮磷阻燃剂复合材料的研究   总被引:1,自引:1,他引:0  
目的研究聚丙烯复合材料的燃烧行为和纳米SiO_2含量对复合材料力学性能的影响。方法采用熔融共混方法,将聚丙烯、氮磷复配阻燃剂及表面改性的纳米SiO_2制备成聚丙烯复合材料。结果在燃烧过程中纳米SiO_2对阻燃性能有一定影响,氮磷复配阻燃剂是影响复合材料阻燃性能的关键因素。随着纳米SiO_2含量的增加,复合材料的极限氧指数先增加后降低,当纳米SiO_2质量分数为1%时,复合材料的极限氧指数最大。随着纳米SiO_2含量的增加,复合材料的拉伸、冲击、弯曲强度和弯曲模量呈现先增大后减小的现象。结论氮磷复配阻燃剂与纳米SiO_2对于复合材料有一定的协同阻燃效果。当纳米SiO_2质量分数为1%时,复合材料的阻燃及力学性能最优。  相似文献   

17.
赵盼盼  李丽萍 《材料导报》2017,31(6):115-119
以聚磷酸铵(APP)和次磷酸铝(AHP)为阻燃剂,马来酸酐接枝聚丙烯(MA-g-PP)为界面相容剂,通过熔融共混制备了聚丙烯(PP)/木粉(WF)复合材料。采用UL-94垂直燃烧、氧指数(LOI)、热重分析(TGA)探究了阻燃PP/WF复合材料的阻燃性和热分解过程。实验表明,当APP与AHP质量比为9∶1时,LOI值为28.3%,垂直燃烧UL-94达到V-0级。TGA和DTG测试表明,APP与AHP复配能降低木纤维的分解温度,使复合材料提前成炭,达到阻燃作用;加入APP与AHP的PP/WF复合材料的成炭率提高了141%,其高温稳定性也得到提高。通过SEM观察到,当m(APP)∶m(AHP)=9∶1时,木塑复合材料可形成致密的炭层,具有更好的隔热、隔氧作用,从而提高了阻燃性。结果表明在聚磷酸铵中加入少量的协效剂次磷酸铝可明显提高PP/WF复合材料的阻燃性。  相似文献   

18.
无机复合阻燃填料的开发及阻燃机理研究   总被引:13,自引:0,他引:13  
研究了氢氧化铝(Al(OH)3)、氢氧化镁(Mg(OH)2)、煅烧高岭土、纳米二氧化硅、三氧化二锑(Sb2O3)等组成的复合阻燃体系对软PVC电缆制品的阻燃作用,开发了一种超细活性无机复合阻燃填料.该复合阻燃填料用于软PVC电缆料中,阻燃性能良好(氧指数达36.4),机械性能及电性能均达到GB8815-88标准规定.正交试验及方差分析表明,Sb2O3的阻燃作用及Al(OH)3与Mg(OH)2之间的协效作用较为突出.Sb2O3与PVC中的氯以氯-锑系统发挥协效阻燃作用,其机理涉及凝聚相阻燃及气相阻燃.Al(OH)3与Mg(OH)2主要在凝聚相发挥阻燃作用.  相似文献   

19.
硅系化合物阻燃聚碳酸酯及其阻燃机理   总被引:5,自引:0,他引:5  
论述了含硅化合物(各类聚硅氧烷)阻燃PC(仅限于添加型)的特点、配方及性能,并详细讨论了硅化合物阻燃PC的机理。含硅阻燃PC的阻燃性、加工性及力学性能均佳,尤其是以冲击强度优异而著称。另外,此类PC生烟性及有毒气体生成量低,可机械回收,与环境兼容,唯售价较昂。聚硅氧烷系在凝聚相阻燃,交联成炭,且阻燃组分能在PC表面富集。含硅PC在高温下的异构化及Fries重排能有效促进PC的交联成炭阻燃。  相似文献   

20.
利用微胶囊红磷(MRP)和聚苯醚(PPO)来提高高抗冲聚苯乙烯(HIPS)的阻燃性能, 通过熔融共混法制备了一系列不同组成的MRP-PPO/HIPS复合材料。采用水平燃烧、垂直燃烧、氧指数、锥形量热分析、高温热分解实验等方法研究了复合材料的阻燃性能。研究表明, 阻燃剂用量相同时, 在HIPS基体中同时加入MRP和PPO得到的复合材料比单独加入MRP或PPO得到的复合材料具有更好的阻燃性能。当MRP-PPO/HIPS的质量比为10:20:70时, 复合材料的氧指数为23.9%, 水平燃烧级别达到FH-1级, 垂直燃烧级别达到FV-0级, 阻燃性能达到最佳。MRP用量过多时, 复合材料的阻燃性能下降。研究认为, PPO和MRP对HIPS具有较强的协同阻燃作用。两者以适当比例并用时能够使复合材料在燃烧时的热释放速率和燃烧热大幅度减小, 降低了气相燃烧区的温度, 起到气相阻燃作用。同时, 复合材料在热分解和燃烧时能够生成连续和致密的炭层, 抑制了燃烧过程中的热量传递和物质交换, 起到凝聚相阻燃作用。因此, 复合材料的阻燃性能显著改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号