首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Aim: A phospholipid complex (TFH-PC) was prepared to increase the oral bioavailability of isorhamnetin, kaempferol, and quercetin from TFH (total flavones of Hippophae rhamnoides L.).

Methods: Solvent evaporation was used to prepare TFH-PC. Relevant parameters were investigated based on the complexation rate of isorhamnetin, kaempferol, and quercetin. Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray power diffraction (X-RPD), and scanning electron microscopy (SEM) were used for characterization. Solubility, octanol–water partition coefficient (log P), dissolution rate, and in vivo pharmacokinetics were also investigated.

Results: TFH-PC was successfully prepared in tetrahydrofuran with a drug to phospholipid ratio of 1:1, reaction temperature of 20?°C, and a reaction time of 1?h. The complexation rates of isorhamnetin, kaempferol, and quercetin were 97.7%, 95.97%, and 92.23%, respectively. FT-IR, DSC, X-RPD, and SEM confirmed the formation of TFH-PC. The aqueous solubilities of the three flavonoids in TFH-PC increased 22.0–26.8-fold compared with TFH. The dissolution of isorhamnetin, kaempferol, and quercetin in TFH-PC was 84.32%, 90.77%, and 100% within 10?min, respectively, greatly improved over TFH. After oral administration of TFH-PC in rats, the bioavailability of isorhamnetin, kaempferol, and quercetin in TFH-PC relative to TFH was 223%, 172%, and 242%, respectively.

Conclusion: The oral absorption of isorhamnetin, kaempferol, and quercetin was significantly improved in TFH-PC, mainly due to increased solubility and dissolution rate. This phospholipid complex shows potential for oral delivery of the flavonoids in TFH.  相似文献   

2.
Purpose: The objective of this study was to investigate the absorption behavior of total flavones of Hippophae rhamnoides L. (TFH) (the sum of isorhamnetin and quercetin as the index component) in the rat intestine using in situ circulation method. Methods: The accumulated TFH absorption and related absorption parameters were calculated. Furthermore, the influences of Cremophor ELP and the P-glycoprotein inhibitor, verapamil, on the intestinal absorption of TFH were studied using the in situ circulation model. Results and Discussion: The results showed that the absorption of TFH increased linearly with its concentration, indicating that a passive diffusion process was dominated. There were no significant differences in the absorption of TFH in three small intestine segments of duodenum, jejunum, and ileum and at different concentrations of Cremophor ELP ranging from 0.25% to 1% (P > 0.05). With the presence of P-gp inhibitor, verapamil, in the circulation fluid, the accumulated absorption of TFH did not increase significantly (P > 0.05). Further studies on the solubility and permeability enhancement of TFH should be investigated to develop new TFH products with high bioavailability.  相似文献   

3.
Abstract

The objective of our investigational work was to develop a proliposomal formulation to improve the oral bioavailability of valsartan. Proliposomes were formulated by thin film hydration technique using different ratios of phospholipids:drug:cholesterol. The prepared proliposomes were evaluated for vesicle size, encapsulation efficiency, morphological properties, in vitro drug release, in vitro permeability and in vivo pharmacokinetics. In vitro drug-release studies were performed in simulated gastric fluid (pH 1.2) and purified water using dialysis bag method. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA), Caco-2 monolayer and everted rat intestinal perfusion techniques. In vivo pharmacokinetic studies were conducted in male Sprague Dawley (SD) rats. Among the proliposomal formulations, F-V was found to have the highest encapsulation efficiency of 95.6?±?2.9% with a vesicle size of 364.1?±?14.9?nm. The in vitro dissolution studies indicated an improved drug release from proliposomal formulation, F-V in comparison to pure drug suspension in both, purified water and pH 1.2 dissolution media after 12?h. Permeability across PAMPA, Caco-2 cell and everted rat intestinal perfusion studies were higher with F-V formulation as compared to pure drug. Following single oral administration of F-V formulation, a relative bioavailability of 202.36% was achieved as compared to pure valsartan.  相似文献   

4.
The objective of this paper was to identify oral bioavailability enhancing approaches for a poorly water-soluble research compound during drug discovery stages using minimal amounts of material. LCQ789 is a pBCS (preclinical BCS) Class II compound with extremely low aqueous solubility (<1 μg/mL) and high permeability, therefore, resulting in very low oral bioavailability in preclinical species (rats and dogs). A number of solubility and/or dissolution enhancing approaches including particle size reduction, solid dispersions, lipid-based formulations and co-crystals, were considered in order to improve the compound's oral bioavailability. High-Throughput Screening (HTS) and in silico modeling (GastroPlus?) were utilized to minimize the compound consumption in early discovery stages. In vivo evaluation of selected physical form and formulation strategies was performed in rats and dogs. Amongst the formulation strategies, optimized solid dispersion and lipid-based formulation provided significant improvement in drug dissolution rate and hence, oral bioavailability. In addition, a significant impact of physical form on oral bioavailability of LCQ789 was observed. In conclusion, a thorough understanding of not only the formulation technique but also the physical form of research compounds is critical to ensure physical stability, successful pharmacokinetic (PK) profiling and early developability risk assessment.  相似文献   

5.
Abstract

Mefenamic acid (MA) has been reported as a weakly soluble drug which presents weak in vivo absorption upon oral administration using conventional formulations. Solid dispersions (SDs) have been investigated extensively in literature for enhancing the solubility and bioavailability of weakly-soluble molecules. Hence, the aim of proposed study was to prepare MA novel formulations in the form of SDs using hot-melt extrusion technology in order to enhance its palatability, bioavailability, and pharmacodynamics effects/anti-inflammatory efficacy. Various SDs of MA were prepared using hot-melt extrusion technology, characterized physically and investigated for dissolution tests. Optimized SD formulations of MA were being subjected to palatability, pharmacodynamics, and pharmacokinetic studies in rats. Optimized SD of MA showed significant rat palatability tastes as compared with pure and marketed MA (p?<?.05). Anti-inflammatory efficacy of 20% SD and 25% SD of MA was found to be 86.44 and 89.83%, respectively, in comparison with 74.57 and 78.24% by pure MA and marketed MA, respectively. The anti-inflammatory efficacy of optimized SD was found to be significant as compared with pure and marketed MA (p?<?.05). The oral absorption of MA from optimized 20% SD was also noted as statistically significant as compared with pure MA (p?<?.05). The relative bioavailability of MA from 20 and 25% SDs was 2.97 and 2.24-folds higher than pure MA. The results of this study suggested that SDs prepared using hot-melt extrusion technology are capable to enhance palatability, anti-inflammatory efficacy, and oral bioavailability of MA in comparison with pure drug.  相似文献   

6.
The aim of the present study was to improve the dissolution, permeability and therefore oral bioavailability of the fexofenadine hydrochloride (FEX), by preparing lipid surfactant based dispersions using self-emulsifying carriers, i.e. Gelucire 44/14 (GLC) and d-α-tocopheryl polyethylene glycol 1000 succinate (Vitamin E TPGS or TPGS). The reprecipitation studies were conducted using these carriers to evaluate inhibition of reprecipitation by maintaining super saturation state. The aqueous solubility of the FEX was increased linearly with increasing GLC, TPGS concentrations as verified by the phase solubility studies. The dispersions of FEX were prepared in different drug/GLC (GD) and drug/TPGS (TD) ratios by melt method and evaluated. The prepared dispersions showed improved dissolution rate in distilled water as dissolution media and highest dissolution rate was achieved with dispersions prepared using TPGS. The solid state characterization was carried by differential scanning calorimetry and scanning electron microscopy indicated reduced crystallinity of the drug. Fourier transform infrared spectroscopy revealed the compatibility of drug with carriers. The ex vivo permeation studies conducted using intestinal gut sac technique, resulted in reduced efflux of the drug by inhibiting intestinal P-glycoprotein from the dispersions. The in situ perfusion studies and in vivo pharmacokinetic studies in male wistar rats showed improved absorption and oral bioavailability from the prepared dispersions as compared to pure drug.  相似文献   

7.
Various particle sizes of spironolactone as a model low solubility drug were formulated to yield micro-and nanosuspensions of the type solid lipid nanoparticles and DissoCubes. Seven oral and one i.v. formulations were tested in an in vivo pharmacokinetic study in rats with the aim of characterizing the bioavailability of spironolactone on the basis of its metabolites canrenone and 7-alpha-thiomethylspirolactone. In addition, a dose escalation study was carried out using nonmicronized spironolactone suspension as well as a nanosuspension type DissoCubes. On the basis of AUC as well as Cmax ratios, three groups of formulations were distinguished. The biggest improvement was seen with a solid lipid nanoparticle formulation yielding a 5.7-fold increase in AUC for canrenone and a similar improvement based on the Cmax metric, followed by a group of three formulations containing nanosized, micronized, and coarse drug material and surfactant. The DissoCubes nanosuspension yielded highly significant improvements in bioavailability averaging 3.3-fold in AUC and 3.0-fold in terms of Cmax for canrenone. The third class encompasses all other formulations, which showed very little to no improvement in bioavailability. The results show that the particle size minimization was not the major determining factor in the bioavailability improvement. Rather, the type of surfactant used as stabilizer in the formulations was of greater importance. Improvement in drug solubility in the intestine as well as in dissolution rate of spironolactone are the most likely mechanisms responsible for the observed effect, although additional mechanisms such as permeability enhancement may also be involved.  相似文献   

8.
Naringin (NA) is one of typical flavanone glycosides widely distributed in nature and possesses several biological activities including antioxidant, anti-inflammatory, and antiapoptotic. The aim of this study was to develop solid dispersion (SD) and to improve the dissolution rate and oral bioavailability of NA. NA–SD was prepared by the traditional preparation methods using PEG6000, F68, or PVP K30 as carrier at different drug to carrier ratios. According to the results of solubility and in vitro dissolution test, the NA–PEG6000 (1:3) SD was considered as an optimal formulation to characterize by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry and powder X-ray diffraction. Furthermore, oral bioavailabilities of NA–PEG6000 (1:3) SD and NA–suspension with the same dosage were investigated in SD rats. The results confirmed the formation of SD and the pharmacokinetic parameters of NA–PEG6000 (1:3) SD (Cmax?=?0.645?±?0.262?µg/ml, AUC0–t?=?0.471?±?0.084?µg/ml?h) were higher than that of NA–suspension (Cmax?=?0.328?±?0.183?µg/ml, AUC0–t =?0.361?±?0.093?µg/ml?h). Based on the results, the SD is considered as a promising approach to enhance the dissolution rate and oral bioavailability of NA.  相似文献   

9.
The objective of this study is to compare two different dissolution-enhancing strategies, solid dispersion (SD) and micronized techniques, for improving oral absorption of poorly soluble glimepiride, and to decide which strategy is suitable for its solubilization. The formulation of glimepiride SD was prepared by a solvent-evaporation process with povidone k-30 (PVPk30) at a weight ratio of 1:9 (drug:carrier). The other was prepared via a modified micronization technique, where glimepiride was premilled together with lactose and Lutrol F68 until the milled material passes through a 500 mesh ASTM sieve (30 μm). The dissolution results indicated that the two techniques were both capable of enhancing the dissolution rate and extent of glimepiride. The release profiles of the two prepared products were similar to the marketed product (Amaryl?) in various types of dissolution media. Furthermore, the oral bioavailability was evaluated for the three formulations in fasted beagle dogs. Statistical analysis indicated that there were no significant differences in pharmacokinetic parameters among the two prepared formulations and a marketed product, especially for AUC????, C(max), and T(max). The dissolution parameters (D?? and AUC????) in Tris buffer demonstrated the good in vitro/in vivo relationship with T(max) values for the three formulations. In conclusion, our studies confirmed that both SD and micronization techniques were capable of improving dissolution and oral absorption of glimepiride tablets to a similar extent as the marketed product, and the three glimepiride tablets were bioequivalent in the case of the rate and extent of absorption in dogs.  相似文献   

10.
This study was conducted primarily to improve the solubility of rebamipide, a poorly water-soluble anti-ulcer drug, using novel ternary solid dispersion (SD) systems and secondly to evaluate the effect of solubility enhancement on its pharmacokinetic (PK) and pharmacodynamic (PD) profile. After dissolving the three components in aqueous medium, ternary SD containing the drug, sodium hydroxide (NaOH) and PVP-VA 64 was achieved by spray drying method, which was used as primary SD. Poloxamer 407, a surfactant polymer, was incorporated in this primary SD by four different methods: co-grinding, physical mixing, melting or spray drying. SD was then characterized by dissolution test, differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR). The spray dried SD of poloxamer 407 together with primary SD displayed highest dissolution rate of the drug of about 70% after 2 h. DSC, PXRD and FT-IR characterized the amorphous state and molecular dispersion of the drug in the SD. PK and PD studies in Sprague–Dawley rats revealed that the bioavailability of the drug using optimal SD was about twofold higher than that of reference product, and the irritation area of stomach was significantly reduced in the ulcer-induced rat model using optimal SD as compared to the reference product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号