首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
微弱图像具有对比度低、噪声高、质量差等特点,一定程度上影响了图像的观察和使用。因此,提出一种小波域的图像增强算法,通过对微弱图像多尺度、多分辨率的小波变换分离各维度小波系数,对低频小波系数进行直方图均衡化,高频小波系数进行Canny算法提取边缘,最后将处理后的各维度小波系数进行图像重构以实现图像增强。并选取了3幅微弱图像,将其经所提出的算法及几种传统经典图像增强算法增强后的图像进行实验仿真对比。仿真结果表明,在主观评价上,所提算法增强后的图像的细节更加丰富,视觉感受更加平滑自然;客观评价指标中信息熵的值也都是最大的,分别是4.989 3,3.741 5,4.796 1,信息丰富度最高;而峰值信噪比和图像质量测量函数的数据表明所提算法增强图像的强度适中,整体性较好。可见,所提出的针对微弱图像的增强算法能够在视觉效果上和图像信息上进行有效的图像增强。  相似文献   

2.
3.
针对低光照图像亮度低、对比度低、颜色失真以及存在噪声等问题,提出了一种基于多尺度融合的低光照图像增强方法。首先,采用快速高效增强算法对图像进行亮度增强;然后,将增强后的图像由RGB颜色空间转换至HSV颜色空间,对亮度分量分别使用改进的对比度限制自适应直方图均衡化、引导滤波和锐化平滑滤波器进行处理,得到3个亮度分量;最后,将处理后的3个亮度分量与相应权值通过多尺度融合后转至RGB颜色空间,获得最终增强图像。实验结果表明,所提算法在评判指标上表现出优越性,具有较好的信息熵、自然图像质量评估和平均梯度。该算法在提升图像亮度、细节增强和噪声去除方面具有显著效果,能够更全面地处理图像,有效提升图像的视觉质量和清晰度。  相似文献   

4.
基于多尺度Retinex算法的彩色雾霾图像增强研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张雅媛 《包装学报》2016,8(3):60-65
介绍了基于颜色恒常性理论的Retinex模型,并重点分析了色彩恢复多尺度Retinex(MSRCR)算法的原理和实现方法。为验证基于Retinex理论的算法对图像增强具有良好的效果,以雾霾天气采集到的3幅彩色道路监控图像为实验对象,在MATLAB7.0软件中,利用MSRCR算法、直方图均衡化2种图像增强方法,对实验图像进行去雾霾处理,并通过主观评价、图像信息熵、亮度通道直方图来比较和分析2种算法的图像增强效果。研究结果表明:采用MSRCR算法可以还原出细节更丰富、辨析度更高的画面,且处理后的图像具有更大的信息熵,图像色彩也更接近原始图像。  相似文献   

5.
红外图像实时增强的新算法   总被引:10,自引:0,他引:10  
针对红外图像的特点,提出了一种红外图像实时增强的新算法。该算法通过分析图像的直方图,得到图像中目标像素数峰值的估计值,并作为平台直方图均衡化的阈值。用该阈值对直方图进行修正,然后通过修正后的直方图进行直方图均衡化。在FPGA内通过采用并行处理结构及流水线技术实现了该算法,并且每秒可处理25帧128×128×8bits的红外图像。理论分析和实验结果均表明,本算法克服了采用一般直方图均衡化增强红外图像的缺点?对背景和噪声增强过度,抑制了目标的增强。该算法对红外图像增强后,图像对比度是直方图均衡化增强后图像对比度的1.8倍。  相似文献   

6.
罗伙根 《硅谷》2010,(8):42-43
直方图均衡是实时图像增强应用较为广泛的一种算法。随着数字图像分辨率的不断提高,现有的算法已经很难满足实时处理的要求。必须找到一种更有效的实时算法来降低图像增强系统对硬件的要求,降低系统成本。因此,介绍现有的几种图像增强算法,并在此基础上提出一种改进的算法。通过对比可以看出该算法有比较好的图像增强效果。  相似文献   

7.
为了解决传统红外图像增强方法存在的问题,该文提出了一种新的红外图像增强方法。首先,使用韦伯定理并结合人类视觉特性对红外图形进行预处理,预处理包括亮度增强和图像分割。其次,针对分割后的不同区域的特点使用不同的方法进行增强处理,使用多尺度Retinex对包括细节信息较多的区域2进行处理,使用改进的自适应直方图均衡算对区域一和区域三进行处理。最后,对处理过的红外图像进行重构。测试结果表明,该文提出的算法整体增强效果较好,更适合人类视觉观察,同时还可以缩短运行时间并且可以消除“光晕”现象,具有广阔的应用空间。  相似文献   

8.
张学典  杨帆  常敏 《包装工程》2020,41(13):251-260
目的为了解决图像因亮度较大造成的成像效果不佳、局部细节不清楚等问题。方法将直方图均衡化技术(Histogram Equalization, HE)引入图像信息熵域,提出对比度弱化的图像信息熵统计直方图自适应均衡化算法(Contrast-reduced Adaptive Entropy Histogram Equalization, CRAEHE)。以各个灰度级信息熵统计值为基础,先将原图像分割成若干个子区域,对每个子区域的灰度信息熵统计值进行阈值截取,补充到子区域内各个灰度级上,再对子区域进行信息熵直方图均衡化处理。采用USC-SIPI和CBSD432数据集图像,用图像灰度均值、标准差、平均梯度、信息熵等参数对实验样本进行质量评价。结果文中算法处理结果较原图灰度均值下降了7.94%,标准差平均提高了52.22%,信息熵平均提高了19.86%,平均梯度提高了57.19%。结论文中算法增强了选自数据集里的过亮图像的细节,并使图像整体细节与质量都得到了改善,该算法的处理结果较其他处理实验样本的主观质量提升明显,对光照强度适应范围广。  相似文献   

9.
关于数字图像处理中直方图均衡化的探讨   总被引:1,自引:0,他引:1  
刘兴建 《硅谷》2011,(16):181-182
直方图均衡化就是把一已知灰度概率分布的图像经过一种变换,使之演变成一幅具有均匀灰度概率分布的新图像。它是以累积分布函数变换法为基础的直方图修正法。分析和总结灰度直方图的均衡化算法并通过MATLAB实验验证该方法能有效达到图像增强的目的。  相似文献   

10.
一种强光背景下小目标图像的增强方法   总被引:2,自引:0,他引:2  
彭罡  张启衡  刘泽金  卢刚 《光电工程》2007,34(12):87-92
针对强光背景下小目标图像特点,提出了一种图像增强算法。在分析了归一化不完全Beta函数取值特征后,找出了Tubbs用于拟合的α、β值在原图极亮、极暗情况下产生跳变的原因,给出了其服从连续变化规律的解释,并在采取模拟退火算法求取其最佳值时,给出了相应处理办法,从而确定了最佳变换曲线,实现原图像的自适应增强;然后采取基于三帧累加图像流处理的办法来累积小目标能量及平滑噪声。仿真实验结果表明,该方法能有效实现强光背景下小目标图像的增强。  相似文献   

11.
    
Image processing requires an excellent image contrast‐enhancement technique to extract useful information invisible to the human or machine vision. Because of the histogram flattening, the widely used conventional histogram equalization image‐enhancing technique suffers from severe brightness changes, rendering it undesirable. Hence, we introduce a contrast‐enhancement dynamic histogram‐equalization algorithm method that generates better output image by preserving the input mean brightness without introducing the unfavorable side effects of checkerboard effect, artefacts, and washed‐out appearance. The first procedure of this technique is; normalizing input histogram and followed by smoothing process. Then, the break point detection process is done to divide the histogram into subhistograms before we can remap the gray level allocation. Lastly, the transformation function of each subhistogram is constructed independently. © 2011 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 21, 280‐289, 2011;  相似文献   

12.
王晓红  章婷 《包装工程》2014,35(3):84-87,147
目的把视觉感兴趣区域概念引入直方图的建造中,提出了一种新的基于视觉感兴趣区域的图像增强方法,使增强效果更符合人眼视觉感知。方法首先在标准观测环境下利用先进的眼动仪设备获得人眼感兴趣区域,然后计算各子区域的平均显著值,以确定各个子区域的权重系数,最后采取类似直方图均衡化的思想,优化配比灰度级的动态范围。结果通过主客观实验结果表明,增强后的图像更符合人眼视觉感知。结论结合了视觉感知特性的直方图增强方法,弥补了传统直方图与人眼视觉感知不一致的弊端,其增强效果更佳。  相似文献   

13.
The histogram equalization process is a simple yet efficient image contrast enhancement technique that generally produces satisfactory results. However, due to its design limitations, output images often experience a loss of fine details or contain unwanted viewing artefacts. One reason for such imperfection is a failure of some techniques to fully utilize the allowable intensity range in conveying the information captured from a scene. The proposed colour image enhancement technique introduced in this work aims at maximizing the information content within an image, whilst minimizing the presence of viewing artefacts and loss of details. This is achieved by weighting the input image and the interim equalized image recursively until the allowed intensity range is maximally covered. The proper weighting factor is optimally determined using the efficient golden section search algorithm. Experiments had been conducted on a large number of images captured under natural indoor and outdoor environment. Results showed that the proposed method is able to recover the largest amount of information as compared to other current approaches. The developed method also provides satisfactory performances in terms of image contrast, and sharpness.  相似文献   

14.
    
In the current era of technological development, medical imaging plays an important part in several applications of medical diagnosis and therapy. This requires more precise images with much more details and information for correct medical diagnosis and therapy. Medical image fusion is one of the solutions for obtaining much spatial and spectral information in a single image. This article presents an optimization-based contourlet image fusion approach in addition to a comparative study for the performance of both multi-resolution and multi-scale geometric effects on fusion quality. An optimized multi-scale fusion technique based on the Non-Subsampled Contourlet Transform (NSCT) using the Modified Central Force Optimization (MCFO) and local contrast enhancement techniques is presented. The first step in the proposed fusion approach is the histogram matching of one of the images to the other to allow the same dynamic range for both images. The NSCT is used after that to decompose the images to be fused into their coefficients. The MCFO technique is used to determine the optimum decomposition level and the optimum gain parameters for the best fusion of coefficients based on certain constraints. Finally, an additional contrast enhancement process is applied on the fused image to enhance its visual quality and reinforce details. The proposed fusion framework is subjectively and objectively evaluated with different fusion quality metrics including average gradient, local contrast, standard deviation (STD), edge intensity, entropy, peak signal-to-noise ratio, Q ab/f, and processing time. Experimental results demonstrate that the proposed optimized NSCT medical image fusion approach based on the MCFO and histogram matching achieves a superior performance with higher image quality, average gradient, edge intensity, STD, better local contrast and entropy, a good quality factor, and much more details in images. These characteristics help for more accurate medical diagnosis in different medical applications.  相似文献   

15.
    
Aiming at the process of medical diagnosis, many problems such as unclear images and low contrast are often caused by noise and interference in the process of medical image acquisition and transmission. This article proposes a new image enhancement method that combines the wavelet domain with the spatial domain. First, we input two identical images (Both of the identical images are original images.) in which the first image is enhanced by histogram equalization. Then, the two images are divided into four sub-images by a two-dimensional wavelet transform. The average of the low-frequency coefficients of the low-frequency sub-images of the two images is taken as the low-frequency coefficients of the final reconstruction. Second, aiming at the problem that the contrast may be too low, the fourth high-frequency sub-image is blurred (sharpened) twice. The fourth high-frequency sub-image after blurring is denoised by median filtering. Finally, the four sub-images are fused to obtain the enhanced image. The experimental results show that the peak signal-to-noise ratio, structural similarity, and processing time of the proposed algorithm are better than those of other contrast algorithms, especially the processing time. These objective indicators show that the proposed algorithm can not only effectively suppress noise but also significantly enhance the contrast. Subjectively, compared with other algorithms, the proposed algorithm achieves a better visual effect and greatly reduces the processing time.  相似文献   

16.
    
In order to enhance the pathological features of medical images and aid the medical diagnosis, the image enhancement is a necessary process. This study presented the Gaussian probability model combining with bi-histogram equalization to enhance the contrast of pathological features in medical images. There are five different bi-histogram equalizations, namely, bi-histogram equalization (BBHE), dualistic sub-image histogram equalization (DSIHE), bi-histogram equalization with a plateau limit (BHEPL), bi-histogram equalization median plateau limit (BHEPL-D), and bi-histogram equalization with modified histogram bins (BHEMHB). The entropy, contrast, absolute mean brightness error (AMBE), and skewness difference are used to quantize the enhancement results. From the experimental result, it is observed that the entropy and contrast of the images can be effectively enhanced by using Gaussian probability bi-histogram equalizations, and the Gaussian probability bi-histogram equalization median plateau limit (GPBHEPL-D) has the best enhanced result. The proposed GPBHEPL-D method is effective in strengthening the pathological features in medical images, so as to increase the efficiency of doctors' diagnoses and computer-aided detection.  相似文献   

17.
基于区域生长法的超声图像分割   总被引:1,自引:0,他引:1  
分割是医学图像处理的一个重要方面,其目的是把原始图像中感兴趣的区域提取出来,尽可能为临床诊断、病理分析、治疗提供可靠的依据。本文对超声图像进行直方图规定化预处理,然后采用区域生长法对超声图像进行分割,取得了满意的效果。  相似文献   

18.
毛文杰  林珊玲  林坚普  梅婷  王廷雨  蔡苾芃  张建豪  林志贤 《光电工程》2025,52(2):240226-1-240226-13
电润湿电子纸采用减色混色系统进行色彩显示,色域较小,容易发生色彩失真,且依赖环境光的漫反射,亮度不足。为解决这些问题,提出一种基于彩色电润湿的色彩空间转换和图像自适应增强算法。该算法将图像从RGB色彩空间转换到HSV空间,并使用CLAHE对饱和度进行均匀分布处理,改善色彩表现。亮度通道通过引导滤波和改进的Retinex算法进行增强,保留细节与边缘信息,使电润湿电子纸在相同光照下依旧保持真实视觉效果。实验结果表明,该算法在PSNR、SSIM、FSIM和FSIMc上分别提高了19%、10.8%、19.19%和19.54%,显著优化电润湿电子纸的显示效果,为其市场化应用提供有力支撑。  相似文献   

19.
    
The collection or transmission of medical images is often disturbed by various factors, such as insufficient brightness and noise pollution, which will result in the deterioration of image quality and significantly affect the clinical diagnosis. To improve the quality of medical images, a contrast enhancement method based on improved sparrow search algorithm is proposed in this paper. The method is divided into two steps to enhance the medical images. First, a new transform function is introduced to improve the brightness or contrast of medical images, and two parameters in the transform function are optimized by the improved sparrow search algorithm. Second, adaptive histogram equalization method with contrast limited is used to equalize the result image of the previous step to make the pixel distribution of the image more uniform. Finally, a large number of experiments and qualitative and quantitative analyses were conducted on the common data sets. The analysis results demonstrate that the presented approach outperforms some existing medical image processing approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号