首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
Transparent, conducting, aluminum-doped zinc oxide (AZO) thin films were deposited on Corning 1737 glass by a DC magnetron sputter. The structural, electrical, and optical properties of the films, deposited using various substrate temperatures, were investigated. The AZO thin films were fabricated with an AZO ceramic target (Al2O3:2 wt%). The obtained films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The lowest resistivity was 6.0 × 10−4Ω cm, with a carrier concentration of 2.7 × 1020 cm−3 and a Hall mobility of 20.4 cm2/Vs. The average transmittance in the visible range was above 90%.  相似文献   

2.
The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated. X-ray diffraction patterns confirm the proper phase formation of the material. Optical transmittance data show high transparency (80% to more than 98%) of the films in the visible portion of solar radiation. Slight variation in the transparency of the films is observed with a variation in the deposition time. Electrical characterizations show the room-temperature conductivity of the films deposited onto polyethylene terephthalate substrates for 4 and 5 h around 0.05 and 0.25 S cm− 1, respectively. On the other hand, for the films deposited on glass substrates, these values are 8.5 and 9.6 S cm− 1 for similar variation in the deposition time. Room-temperature conductivity of the ZnO films deposited on glass substrates is at least two orders of magnitude higher than that of ZnO films deposited onto polyethylene terephthalate substrates under identical conditions. Hall-measurements show the maximum carrier concentration of the films on PET and glass substrate around 2.8 × 1016 and 3.1 × 1020 cm− 3, respectively. This report will provide newer applications of ZnO thin films in flexible display technology.  相似文献   

3.
Zinc sulfide thin films have been deposited onto glass substrates by chemical bath deposition. The various deposition parameters such as volume of sulfide ion source, pH of bath, deposition time, temperature etc are optimized. Thin films of ZnS with different thicknesses of 76–332 nm were prepared by changing the deposition time from 6–20 h at 30° C temperature. The effect of film thickness on structural and electrical properties was studied. The electrical resistivity was decreased from 1.83 × 105 Ω-cm to 0.363 × 105 Ω-cm as film thickness decreased from 332 nm to 76 nm. The structural and activation energy studies support this decrease in the resistivity due to improvement in crystallinity of the films which would increase the charge carrier mobility and decrease in defect levels with increase in the thickness.  相似文献   

4.
Indium tin oxide (ITO) thin films were deposited by radio frequency (RF) magnetron sputtering onto glass substrates. The transparent and conducting ITO thin films were obtained on externally unheated glass substrate, without any post-heat treatment, and by varying the deposition process parameters such as the working pressure and the RF Power. The effect of the variation of the above deposition parameters on the structural, surface morphology, electrical, and optical properties of the thin films have been studied. A minimum resistivity of 2.36 × 10−4 Ω cm and 80% transmittance with a figure of merit 37.2 × 10−3 Ω−1 is achieved for the thin films grown on externally unheated substrate with 75 W RF power and 0.5 mTorr working pressure.  相似文献   

5.
We report the synthesis of isotopically-labeled graphite films on nickel substrates by using cold-wall chemical vapor deposition (CVD). During the synthesis, carbon from 12C- and 13C-methane was deposited on, and dissolved in, a nickel foil at high temperature, and a uniform graphite film was segregated from the nickel surface by cooling the sample to room temperature. Scanning and transmission electron microscopy, micro-Raman spectroscopy, and X-ray diffraction prove the presence of a graphite film. Monolayer graphene films obtained from such isotopically-labeled graphite films by mechanical methods have electron mobility values greater than 5000 cm2·V−1·s−1 at low temperatures. Furthermore, such films exhibit the half-integer quantum Hall effect over a wide temperature range from 2 K to 200 K, implying that the graphite grown by this cold-wall CVD approach has a quality as high as highly oriented pyrolytic graphite (HOPG). The results from transport measurements indicate that 13C-labeling does not significantly affect the electrical transport properties of graphene.  相似文献   

6.
ZnO thin films were grown by the pulse laser deposition (PLD) method using Si (100) substrates at various substrate temperatures. The influence of the substrate temperature on the structural, optical, and electrical properties of the ZnO thin films was investigated. All of the thin films showed c-axis growth perpendicular to the substrate surface. At a substrate temperature of 500 °C, the ZnO thin film showed the highest (002) peak with a full width at half maximum (FWHM) of 0.39°. The X-ray Photoelectron Spectroscopy (XPS) study showed that Zn was in excess irrespective of the substrate temperature and that the thin film had a nearly stoichiometrical composition at a substrate temperature of 500 °C. The photoluminescence (PL) investigation showed that the narrowest UV FWHM of 15.8 nm and the largest ratio of the UV peak to the deep-level peak of 32.9 were observed at 500 °C. Hall effect measurement systems provided information about the carrier concentration, mobility and resistivity. At a substrate temperature of 500 °C, the Hall mobility was the value of 37.4 cm2/Vs with carrier concentration of 1.36 × 1018 cm−3 and resistivity of 2.08 × 10−1 Ω cm.  相似文献   

7.
Polycrystalline thin films of Ti-doped indium oxide (indium–titanium-oxide, ITiO) were prepared by d.c. magnetron sputtering and their electrical and optical properties were investigated. Doping of Ti was effective in improvement of the electroconductivity of the indium oxide: the electrical resistivity of 1.7 × 10−3 Ω cm of non-doping decreased to minimum value of 1.8 × 10−4 Ω cm at 2.4 at.% Ti-doping when the films were deposited at 300 °C. The polycrystalline ITiO films of 0.8–1.6 at. % Ti-doping showed the high Hall mobilitiy (82–90 cm2 V−1 s−1) and the relatively low carrier density (2.4–3.5 × 1020 cm−3) resulting in characteristics of both low resistivity (2.1–3.0 × 10−4 Ω cm) and high transmittance in the near-infrared region (over 80% at 1550 nm), which cannot be shown in the conventional Sn-doped indium oxide (ITO) films.  相似文献   

8.
Yaodong Liu 《Vacuum》2006,81(1):18-21
Polycrystalline Al-doped ZnO films with good photoluminescence property were successfully deposited on quartz glass substrates by pulsed laser deposition (PLD) at room temperature. The films were obtained by ablating a metallic target (Zn:Al 3 wt%) at various laser energy densities (1.0-2.1 J/cm2) in oxygen atmosphere (9 Pa). The structure of the films was characterized by XRD. Ultraviolet photoluminescence centered at 359-361 nm was observed in the room temperature PL spectra of the Al-doped ZnO films.  相似文献   

9.
Transparent conductive nano ZnO thin films with different Ga doping concentrations (1, 3, 5, 7 at.%) were prepared on glass substrate by RF magnetron sputtering. The influence of Ga doping concentration on the structural, electrical and optical properties of ZnO:Ga films was investigated by XRD, SEM, Hall measurement and optical-transmission spectroscopy. It shows that the nano ZnO:Ga films are dense and flat, and have polycrystalline structure with preferential (002) and weak (101) orientation. The grain sizes, carrier concentration and Hall mobility changes non-linearly with the increase of Ga-content. The lowest resistivity of 1.44×10−3 Ωcm appears at 3 at.% Ga doping concentration. The average transmittance of the films is about 80∼90% in the visible range. The optical band gap obtained for these films is larger than for pure ZnO (∼3.37 eV).  相似文献   

10.
Effects of annealing process parameters such as annealing temperature, time, and atmosphere on the electrical resistivity and transmittance properties of Ga-doped ZnO (ZnO:Ga) thin films deposited on glass by rf magnetron sputtering were investigated. The electrical resistivity of a ZnO:Ga thin film is effectively decreased with increasing annealing temperature and time in a reducing atmosphere such as N2 + 5%H2. This is attributed to passivation of grain boundaries and zinc ions by hydrogen atoms resulting in increases in carrier concentration and mobility. Also the resistivity of 4.9 × 10−4Ω cm was obtained by annealing at 200°C for 15 h in the same atmosphere, which is not bad for a transparent conductor for solar cell applications. However, annealing at a temperature higher than 400°C is less effective. The lowest resistivity of 2.3 × 10−4Ω cm was obtained by annealing at 400°C for 1 h in an N2 + 5%H2 atmosphere. The optical transmittance of the ZnO:Ga film is improved by annealing regardless of the annealing atmosphere. Annealing in N2 + 5%H2 atmosphere widens the optical band gap, while annealing in an O2 atmosphere makes the band gap narrower, which can be explained as a blue shift phenomenon.  相似文献   

11.
Reproducible and stable p-type ZnO thin films have been prepared by the N–Al codoping method. Secondary ion mass spectroscopy measurements demonstrate that N and Al are incorporated into ZnO. The resistivity, carrier concentration, and Hall mobility are typically of 50–100 Ωcm, 1×1017–8×1017 cm−3, and 0.1–0.6 cm2/Vs, respectively, for the N–Al codoped p-type ZnO films. Hall measurement, X-ray diffraction, and optical transmission were carried out to investigate the changes of the properties with the storage period. Results show that the p-type characteristics of the N–Al codoped ZnO films are of acceptable reproducibility and stability. In addition, the N–Al codoped p-type ZnO films have good crystallinity and optical quality. The properties are time independent.  相似文献   

12.
Amorphous InGaZnO thin films were deposited on quartz glass substrate at room temperature utilizing radio frequency magnetron sputtering technique. Sputtering power and oxygen flow rate effects on the physical properties of the InGaZnO films were systematically investigated. It is shown the film deposition rate and the conductivity of the InGaZnO films increased with the sputtering power. The as-grown InGaZnO films deposited at 500 W exhibited the Hall mobility of 17.7 cm2/Vs. Average optical transmittance of the InGaZnO films is greater than 80% in the visible wavelength. The extracted optical band gap of the InGaZnO films increased from 3.06 to 3.46 eV with increasing the sputtering power. The electrical properties of the InGaZnO films are greatly dependent on the O2/Ar gas flow ratio and post-growth annealing process. Increasing oxygen flow rate converted the InGaZnO films from semiconducting to semi-insulating, but the resistivity of the films was significantly reduced after being annealed in vacuum. Both the as-grown and annealed InGaZnO films show n-type electrical conductivity.  相似文献   

13.
In the present work, we report the deposition of high resistivity c-axis oriented ZnO films by RF magnetron sputtering. The deposition parameters such as RF power, target-to-substrate spacing, substrate temperature, and sputtering gas composition affect the crystallographic properties of ZnO films, which were evaluated using XRD analysis. The self-heating of the substrate in plasma during film deposition was investigated and we report that highly “c-axis oriented” ZnO thin films can be prepared on different substrates without any external heating under optimized deposition parameters. The post-deposition annealing of the film at 900 °C for 1 h in air ambient increases the intensity of (002) peak corresponding to c-axis orientation in addition with the decrease in full width at half maxima (FWHM). Bond formation of ZnO was confirmed by FTIR analysis. Grains distribution and surface roughness have been analyzed using SEM and AFM. The DC resistivity of the films prepared under different deposition conditions was measured using MIS/MIM structures and was found to be in the range of 1011–1012 Ω cm at low electric field of 104 V/cm. The ZnO film of 1 μm thickness has transmittance of over 85% in the visible region. Applications of these films in MEMS devices are discussed.  相似文献   

14.
ZnO : Al (ZAO) films were deposited on glass substrates by a reactive mid-frequency sputtering system. The microstructural, electrical, and optical properties of ZAO films were investigated. It was observed that the polycrystalline film was (0 0 2n) textured with columnar structure. The minimum resistivity was 1.39×10–4 cm with a carrier concentration of 1.58×1021 cm–3 and a Hall mobility of 28.2 cm2 V–1 s–1, correspondingly with the c-axis nearly equal to the value of ZnO powder and the minimum mechanical stress therein. The average transmittance of 80.8% in the visible range and infrared reflectance of over 86% in the 1600–4400 cm–1 interval were obtained. The ZAO films were used as the transparent anodes to fabricate light-emitting diodes, and a luminance efficiency of 2.09 cd A–1 was measured at a current density of 5.38 A m–2.  相似文献   

15.
InP thin films were prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which were atomized with compressed air as carrier gas. The InP thin films were obtained on glass substrates. Thin layers of InP have been grown at various substrate temperatures in the range of 450–525°C. The structural properties have been determined by using X-ray diffraction (XRD). The changes observed in the structural phases during the film formation in dependence of growth temperatures are reported and discussed. Optical properties, such as transmission and the band gap have been analyzed. An analysis of the deduced spectral absorption of the deposited films revealed an optical direct band gap energy of 1.34–1.52 eV for InP thin films. The InP films produced at a substrate temperature 500°C showed a low electrical resistivity of 8.12 × 103 Ω cm, a carrier concentration of 11.2 × 1021 cm−3, and a carrier mobility of 51.55 cm2/Vs at room temperature.  相似文献   

16.
Nanocrystalline ITO thin films were deposited on glass substrates by a new spray pyrolysis route, Jet nebulizer spray (JNS) pyrolysis technique, for the first time at different substrate temperatures varying from 350 to 450 °C using a precursor containing indium and tin solution with 90:10 at% concentration. The structural, optical and electrical properties have been investigated as a function of temperature. X-ray diffraction analysis showed that the deposited films were well crystallized and polycrystalline with cubic structure having (222) preferred orientation. The optical band gap values calculated from the transmittance spectra of all the ITO films showed a blue shift of the absorbance edge from 3.60 to 3.76 eV revealing the presence of nanocrystalline particles. AFM analysis showed uniform surface morphology with very low surface roughness values. XPS results showed the formation of ITO films with In3+ and Sn4+ states. TEM results showed the nanocrystalline nature with grain size about 12-15 nm and SAED pattern confirmed cubic structure of the ITO films. The electrical parameters like the resistivity, mobility and carrier concentration are found as 1.82 × 10−3 Ω cm, 8.94 cm2/Vs and 4.72 × 1020 cm−3, respectively for ITO film deposited at 400 °C. These results show that the ITO films, prepared using the new JNS pyrolysis technique, have the device quality optoelectronic properties when deposited under the proposed conditions at 400 °C.  相似文献   

17.
ZnO piezoelectric films with the preferred 002-orientation were prepared by sol-gel method. The annealing temperature was 600C and the resistivity of the ZnO film was 1 × 106 Ω ⋅ cm. Li2CO3 and LiCl were added respectively into ZnO precursor as source of Li+-ion. The molar ratio of [Li+]/[Zn2 +] was 0.05. It is observed that the annealing temperature for forming preferred 002-orientation of ZnO films decreases from 660 to 550 C after Li2CO3 being doped. When Li2CO3 and LiCl are doped, the resistivity of ZnO films increases to 108Ω ⋅ cm and 109Ω ⋅ cm, respectively, with an annealing temperature of 550 C. When annealing temperature is 600 C, the resistivity of the ZnO film with LiCl dopant increases to 107Ω cm. The influence mechanism of the two dopants on the properties of the ZnO films is analyzed.  相似文献   

18.
The compositional, structural, microstructural, dc electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol–gel process using a spin-coating technique were investigated. The ZnO films were obtained by 5 cycle spin-coated and dried zinc oxide films followed by annealing in air at 600 °C. The films deposited on the platinum coated silicon substrate were crystallized in a hexagonal wurtzite form. The energy-dispersive X-ray (EDX) spectrometry shows Zn and O elements in the products with an approximate molar ratio. TEM image of ZnO thin film shows that a grain of about 60–80 nm in size is really an aggregate of many small crystallites of around 10–20 nm. Electron diffraction pattern shows that the ZnO films exhibited hexagonal structure. The SEM micrograph showed that the films consist in nanocrystalline grains randomly distributed with voids in different regions. The dc conductivity found in the range of 10−5–10−6 (Ω cm)−1. The optical study showed that the spectra for all samples give the transparency in the visible range.  相似文献   

19.
A large number of thin films of cadmium oxide have been prepared on glass substrates by spray pyrolysis method. The prepared films have uniform thickness varying from 200–600 nm and good adherence to the glass substrate. A systematic study has been made on the influence of thickness on resistivity, sheet resistance, carrier concentration and mobility of the films. The resistivity, sheet resistance, carrier concentration and mobility values varied from 1·56–5·72×10−3 Ω-cm, 128–189 Ω/□, 1·6–3·9×1021 cm−3 and 0·3–3 cm2/Vs, respectively for varying film thicknesses. A systematic increase in mobility with grain size clearly indicates the reduction of overall scattering of charge carriers at the grain boundaries. The large concentration of charge carriers and low mobility values have been attributed to the presence of Cd as an impurity in CdO microcrystallites. Using the optical transmission data, the band gap was estimated and found to vary from 2·20–2·42 eV. These films have transmittance around 77% and average reflectance is below 2·6% in the spectral range 350–850 nm. The films aren-type and polycrystalline in nature. SEM micrographs of the CdO films were taken and the films exhibit clear grains and grain boundary formation at a substrate temperature as low as 523 K.  相似文献   

20.
Zn0.86Cd0.11In0.03O alloy semiconductor film was deposited on quartz substrate by pulsed laser deposition technique. Cd is used to change the optical band gap and In is used to increase the carrier concentration of the ZnO film. XRD studies confirm that the structure of Zn0.86Cd0.11In0.03O is hexagonal wurtzite structure without CdO phase appeared. FE-SEM shows that the grain size of Zn0.86Cd0.11In0.03O film is smaller than that of ZnO. These films are highly transparent (∼85%) in visible region. Most importantly, the electrical properties of Zn0.86Cd0.11In0.03O film highly improved with In doped. It has low resistivity (4.42×10−3 Ω cm) and high carrier concentration (5.50×1019 cm−3) that enable this film a promising candidate for window layer in solar cells and other possible optoelectronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号