首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
《中国测试》2017,(4):56-62
该文提出一种基于多传感信息融合技术进行机器人运动学标定的方法。首先通过对机器人的指数积(POE)正向运动学模型取微分的方式建立末端执行器的误差模型,利用ROMER-RA7520绝对关节臂测量机和安装在末端工具上的多个传感器分别采集末端执行器的位置和姿态信息;随后根据坐标统一原理将测量机的位置测量数据和多传感器的姿态量测数据转换到机器人基础坐标系下,实现位姿数据的空间配准;接着运用自适应加权融合算法融合处理经过空间配准后的位姿数据,得到末端执行器位姿测量值;最后应用迭代最小二乘法求解出参数偏差。KR5arc机器人标定仿真实验表明:该方法可大幅度提升机器人在任意位姿下的定位、定姿精度。  相似文献   

2.
任瑜  张丰  郭志敏  宋增超  龚婷 《计量学报》2018,39(5):615-621
为满足带有不同末端执行器的工业机器人系统的绝对位姿检测需求,提出一种通用的检测方法。其基本原理是以激光跟踪仪测量固定在机器人末端的4个参考点从而间接测量机器人的绝对位姿,并与指令位姿比较实现机器人位姿准确度和位姿重复性检测;其中,参考点坐标及机座坐标系通过多姿态约束同步标定,并设计非线性标定算法。通过末端带有制孔执行器的KUKA KR210 R2700工业机器人的位姿检测实验表明:该检测方法的准确性可满足机器人位姿检测的需要,且无需特殊的机械工装,具有良好的通用性;基于多姿态约束的非线性标定方法具有良好的鲁棒性,可有效的减小因机器人运动模型不准确引起的标定误差。  相似文献   

3.
机器人定位精度标定技术的研究   总被引:2,自引:0,他引:2  
机器人末端位姿的精度依赖于各连杆几何参数的精度。为了提高机器人的位姿精度,需要对机器人进行标定,为此必须研究机器人运动学模型的建立方法。基于MDH模型和微分运动学,识别出机器人的各个连杆几何参数误差对机器人位姿精度影响程度,并结合最小二乘算法,对机器人的定位精度进行修正。实验表明,该方法适合对机器人几何参数误差的标定,并且能够提高机器人的综合性能。  相似文献   

4.
本文分析了含绳长误差的绳索并联机构运动控制过程,设计了一种基于长短期记忆(LSTM)神经网络预测误差补偿模型的预松弛控制方法,提高了绳索并联机构末端位姿在运动过程中的准确性与连续性。本文基于矢量闭环原理建立了系统运动学模型,得到了绳索末端位姿的非线性误差模型,采用LSTM神经网络进行非线性误差的预测补偿。基于离散控制周期分配主、从控制绳,实现系统的预松弛控制,减小绳索末端的无序晃动。仿真结果表明,误差补偿之后,末端位姿精度有了明显的提高,而预松弛控制的位姿与索力相较于传统控制也更加连续,验证了该方法的可行性。  相似文献   

5.
曹华  李伟 《包装工程》2021,42(9):249-253
目的为提高包装机械臂运行精度,解决视觉伺服控制系统中手眼标定问题,基于遗传算法设计一种机械臂运动学参数标定方法。方法在明确手眼视觉坐标的基础上,给出不同坐标系之间的变换关系。通过对比机械臂末端执行器理论位置和实际位置,确定其运动学参数标定误差模型。基于遗传算法基本原理,搭建了相关适应度函数,根据计算所得误差补偿量更新末端执行器位姿。最后,对机械臂运动控制系统进行联合调试以及实验分析。结果实际位置和理论位置之间偏差绝对值的平均值大约为0.8 mm,偏差最大值只有1.2 mm,精度比较高。结论所述手眼标定方法可以显著提高机械臂运动精度,可满足相关包装行业要求。  相似文献   

6.
利用校正球进行机器人结构参数识别的方法   总被引:2,自引:1,他引:1  
彭中波  黄玉美  高峰  程祥 《计量学报》2004,25(2):131-133
机器人末端执行器的运动轨迹是由多个构件共同协调运动决定,构件的结构参数误差必然影响到末端执行器的位姿,所以如何识别结构参数非常重要。中提出一种利用校正球和相应的算法进行结构参数识别的方法,并在西安理工大学研制开发的FMM10-680机器人上进行了验证。  相似文献   

7.
工业机器人各关节运动描述常常使用齐次坐标变换矩阵来表述末端执行器相对机座的位姿变化,运动功能位姿矩阵是描述这种变化的方法之一。本文在介绍相关定义基础上详细论述了机器人运动功能位姿矩阵的构成并举例分析了如何列出该矩阵。  相似文献   

8.
应用矩阵微分建立了股骨颈手术导航机器人的位姿误差模型.依次做了以下主要工作:设计股骨颈手术导航机器人的三维形体结构,即串、并联混合机构;基于结构与运动特征,采用传递矩阵建立手术导航模型;提取特征参数作为微分变元,通过矩阵微分建立手术导航的位姿误差模型;应用仿真软件matlab7.0,以导航机器人的设计尺寸与容差值为变量,对特征参数引起的导航位姿误差分布进行仿真,其结果位姿误差呈平面分布,极大误差在边界线上获得.应用矩阵微分建立的手术导航误差分析模型的工程含义明确,结构规范,适用于将机器人的精度校核穿插到形体设计的前期阶段进行,在并行设计中的精度校验上有实用性.  相似文献   

9.
提出了用人工神经元网络(ANN)补偿大射电望远镜(LT)中柔索驱动并联机器人(WDPR)系统动平台位姿误差的方法.为了提高WDPR的运动精度,建立了3种可行的误差补偿方案,并运用Levenberg-Marquart(L-M)算法训练了相应的3个神经元网络.标定仿真显示,基于索长补偿的柔性标定方案比基于动平台位姿补偿的标定方案好.研究结果为提高LT舱索系统的控制精度奠定了理论基础.  相似文献   

10.
在某项目中为实现工业机器人自主调整位姿从而完成预定的测量,本文结合实例介绍了一种新型的末端执行器,提出了一种基于空间向量变换的智能引导的算法。该算法利用空间向量变换求出工业机器人在其工具坐标系下的旋转角度和运动距离从而为工业机器人完成自动测量提供智能引导。  相似文献   

11.
标定机器臂的运动学参数可以有效提高机械臂的绝对定位精度。针对一般平面约束标定方法往往通过手动示教获取测量数据,效率低,提出一种基于视觉辅助定位约束平面的机械臂运动学参数辨识方法。为了弥补双目视觉视场范围狭小的弊端,在约束平面上粘贴3个靶点,以此将对平面的定位等效成对靶点的定位。应用双目视觉系统提取靶点中心并进行立体匹配,得到靶点在机械臂基坐标系下的三维位置信息;同时构建靶点坐标系,以此规划出按一定规律分布的约束点;为了进一步提高标定精度,建立双平面约束误差模型,通过两垂直平面上任意非共线的3个点得到一系列法向量,每一对法向量的数量积为0,即增加了约束方程;利用机械臂对相互垂直的两约束平面自动进行接触式测量,通过改进的最小二乘法辨识出真实的运动学参数误差。实验结果表明,基于双平面约束误差模型,修正运动学参数后,机械臂绝对位置精度由1.234 mm提高到了0.453 mm。该方法实现了数据的自动化测量,大大提高了标定效率,为机械臂批量标定提供了参考,具有工程意义。  相似文献   

12.
陆艺  沈添秀  罗哉  郭斌 《计量学报》2021,42(1):66-71
针对工业机器人绝对定位精度较低问题,提出一种基于线结构光传感器的工业机器人运动学参数标定方法。首先,将线结构光传感器固定安装在机器人末端,建立传感器测量模型,然后建立机器人运动学模型,通过手眼关系将传感器模型与机器人模型连接组成完整的标定系统模型。其次,使线结构光传感器在不同位姿下对某一固定点进行测量,得到该点在机器人基座标下的坐标值。并建立该坐标值的理论值与实际值偏差的误差模型,从而建立标定方程组,利用最小二乘法辨识出运动学参数误差并修正参数。最后,通过将这些参数更新到理想运动学模型中,比较标定前后测量点之间的位置偏差。实验表明,平均误差和标准差分别减小了50%和42%以上。  相似文献   

13.
针对自主研发的模块化六自由度轻载搬运机器人,使用激光跟踪仪并采用直接标定法进行了运动学标定与实验研究。采用D-H法构建了机器人连杆坐标系和机器人运动学模型,并运用微分变换的方法建立误差模型。通过激光跟踪仪测量机器人末端位置,将其与运动学模型求解得到的机器人末端位置进行比较,验证了误差模型的正确性。然后将误差模型计算得到的机器人连杆参数误差在机器人控制系统软件中进行修正。最后利用激光跟踪仪测量机器人的关节转角间隙误差,将误差值转换成脉冲数并在软件中进行补偿。机器人运动学标定实验表明,使用激光跟踪仪进行连杆参数误差补偿和关节转角间隙误差补偿可以明显的减小绝对定位误差,绝对定位误差降低了69.6%,定位精度有了明显的提高。  相似文献   

14.
王婧月  陆佳平  王利强 《包装工程》2023,44(23):191-197
目的 为提高M型预制袋包装机袋口折合机构轨迹输出点的运动精度,对袋口折合机构进行运动精度可靠性优化。方法 在运动学分析的基础上,用环路增量法建立考虑杆长误差时袋口折合机构的位置误差模型,接着对轨迹输出点进行可靠性分析及蒙特卡洛法验证,通过灵敏度分析确定关键误差影响因素,最后进行运动精度可靠性优化。结果 建立的可靠性模型可以有效地反映杆长误差对机构运动精度的影响,x分量轨迹的可靠度由82.5%提高至92.91%,y分量轨迹可靠度由65.34%提高至89%。结论 经过可靠性优化能够使袋口折合机构运动精度满足设计要求。  相似文献   

15.
Industrial robots are widely used in various areas owing to their greater degrees of freedom (DOFs) and larger operation space compared with traditional frame movement systems involving sliding and rotational stages. However, the geometrical transfer of joint kinematic errors and the relatively weak rigidity of industrial robots compared with frame movement systems decrease their absolute kinematic accuracy, thereby limiting their further application in ultraprecision manufacturing. This imposes a stringent requirement for improving the absolute kinematic accuracy of industrial robots in terms of the position and orientation of the robot arm end. Current measurement and compensation methods for industrial robots either require expensive measuring systems, producing positioning or orientation errors, or offer low measurement accuracy. Herein, a kinematic calibration method for an industrial robot using an artifact with a hybrid spherical and ellipsoid surface is proposed. A system with submicrometric precision for measuring the position and orientation of the robot arm end is developed using laser displacement sensors. Subsequently, a novel kinematic error compensating method involving both a residual learning algorithm and a neural network is proposed to compensate for nonlinear errors. A six-layer recurrent neural network (RNN) is designed to compensate for the kinematic nonlinear errors of a six-DOF industrial robot. The results validate the feasibility of the proposed method for measuring the kinematic errors of industrial robots, and the compensation method based on the RNN improves the accuracy via parameter fitting. Experimental studies show that the measuring system and compensation method can reduce motion errors by more than 30%. The present study provides a feasible and economic approach for measuring and improving the motion accuracy of an industrial robot at the submicrometric measurement level.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-022-00400-6  相似文献   

16.
运动副间隙是影响机构运动与动力性能的一类最重要的不确定性.为精确估计含运动副间隙的机构运动可靠度,建立机构运动间隙合理、有效的概率模型是关键.为此,以含运动副间隙的函数生成机构为例,在其运动误差函数中综合考虑机构的结构误差和随机误差,应用截尾混合降维法对运动副间隙变量进行处理并建立机构运动误差的概率等效模型,采用一次二阶矩法实现等效模型的求解.数值实例验证了截尾混合降维法在考虑结构误差和随机误差含运动副间隙的函数机构运动可靠性分析中的有效性.  相似文献   

17.
班朝  任国营  王斌锐  陈相君  薛梓  王凌 《计量学报》2021,42(9):1128-1135
针对环境或人为因素引入的测量粗差对测量坐标系和机器人基坐标系的转换存在较大影响的问题,对奇异值分解(SVD)算法进行了改进,并将其应用于机器人运动学标定中。以ABB-IRB2600型机器人为研究对象,建立修正型D-H(MD-H)运动学模型和误差模型;通过激光跟踪仪测量得到机器人末端靶球位置坐标,在SVD算法中,根据补偿前位置误差大小对测量数据重新分配权重,转换测量坐标系和机器人基坐标系;使用Levenberg-Marquart(L-M)算法进行了误差参数辨识,并在Matlab中对机器人25个运动学参数进行了仿真补偿。仿真和实验结果表明,加权SVD算法稳定性更优,能够减小测量粗差影响,经标定后机器人的平均绝对误差降低了65.10%,均方根误差降低了65.85%,其绝对定位精度得到了明显提高。  相似文献   

18.
目的在机器人视觉应用领域中,为控制机器人能够完成焊接、搬运、跟踪等任务,需要确定摄像机与目标之间的相对位姿关系,提出一种目标位姿测量方法。方法利用单摄像机获取目标特征,坐标变换参数表示为对偶四元数的形式,同时计算旋转矩阵和平移向量,构建位置向量和方向向量的测量值与模型值之间的误差方程,利用Hopfield神经网络实现拉格朗日乘子法,求解目标位姿最优解。结果利用Matlab软件平台,选择SVD,DQ以及文中算法进行比较,仿真实验结果表明,基于Hopfield神经网络和对偶四元数的位姿测量算法计算出的位姿参数误差最小。随着测量点数量的增大,文中提出的算法精度更高。结论对偶四元数同时求解位姿变换矩阵的旋转分量和平移分量,可消除计算误差,基于Hopfield神经网络和拉格朗日乘子法,可快速准确地计算,并收敛至目标位姿最优解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号