首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文用激光全息干涉计量术对七种不同金属材料(20号钢 LF21铝合金,18—8奥氏体不锈钢,LF-6铝合金,37SiMnCrMoV 钢,30CrMnSi 钢和 CrMn 钢)的焊件尺寸不稳定性进行了研究。结果表明:七种材料的焊件都存在着尺寸不稳定,这种尺寸不稳定变形随时间的变化速率逐渐变缓;合金结构钢焊件的尺寸不稳定性比低碳钢和奥氏体不锈钢大;通过辅助的残余奥氏体的测量以及冷弯试件与焊件的对比,认为引起37SiMnCrMoV 钢焊件短期(24小时)尺寸不稳定的主要原因可能是残余应力在室温下的松弛。  相似文献   

2.
本文对供应状态LY12CZ硬铝合金在未经任何超细预处理的情况下进行了超塑性变形的力学特性、显微组织方面的研究。确认LY12CZ硬铝合金在等温压缩变形中发生了动态再结晶,动态再结晶会诱发超塑性,使用新研制的D润滑剂,使其能在快速成形时有较好的超塑性能,在实际生产中有推广应用价值。  相似文献   

3.
利用ALE网格自适应技术及相应边界条件处理,建立搅拌摩擦焊接全过程(下压阶段和稳定焊接阶段)热力耦合有限元模型。采用6061铝合金焊件验证模型。结果表明:整个焊接过程温度场最高温度在463℃左右,低于材料熔点;稳定焊接6s后,焊件后方横截面上等效塑性应变区近似呈"V"形分布,前进边侧变形程度较返回边侧剧烈,变形范围更大。  相似文献   

4.
动态低应力小变形无势裂随焊锤击焊接技术研究   总被引:10,自引:1,他引:9  
从力学角度出发,首次提出随焊锤击的焊接技术,并结合跨焊缝两侧横向位移的测量及显微组织的研究,分析了随焊锤击防止焊接裂纹的作用机理,试验结果表明,随焊狂击技术可显著地改善焊缝显微组织及残余应力分布,防止焊接热裂纹的产生,并能够有效地控制LY12CZ铝合金薄板焊接横向及纵向收缩变形,可以认为随焊锤击是一种更合理,更具实用价值的低应力小变形无热裂的焊接技术新方法。  相似文献   

5.
动态低应力小变形无热裂随焊锤击焊接技术研究   总被引:3,自引:1,他引:2  
从力学角度出发,首次提出随焊锤击的焊接技术,并结合跨焊缝两侧横向位移的测量及显微组织的研究,分析了随焊锤击防止焊接热裂纹的作用机理.试验结果表明,随焊锤击技术可显著地改善焊缝显微组织及残余应力分布,防止焊接热裂纹的产生,并能够有效地控制LY12CZ铝合金薄板焊接横向及纵向收缩变形.可以认为随焊锤击是一种更合理、更具实用价值的低应力小变形无热裂的焊接技术新方法.  相似文献   

6.
预变形对LY12铝合金板热处理后晶粒度的影响   总被引:1,自引:0,他引:1  
为了制定合理的铝合金板多道次成形工艺,需确定每道次的粗晶临界应变.通过将单向拉伸试件拉伸到不同预应变,然后热处理测定晶粒度的方法,分别研究了不同预变形对退火和淬火热处理后LY12铝合金板晶粒度的影响.结果表明,不同预变形对退火热处理后晶粒度无影响;对淬火热处理后晶粒度影响显著,而且存在一个临界应变,当预应变大于该临界应变时,晶粒突然长大.对于包铝层,该临界应变小于0.8%;对于基体,该临界应变在4%左右.对于LY12铝合金板多道次成形工艺设计,退火前道次极限变形量的制定不需考虑粗晶影响,淬火前道次变形量的制定需考虑粗晶临界应变.  相似文献   

7.
为了提高铝合金在海水中的耐磨性,对LY12铝合金进行微弧氧化,采用扫描电镜、X射线衍射仪观察微弧氧化膜形貌并分析其成分;采用UMT-2型摩擦磨损试验机研究了微弧氧化膜在人造海水中的摩擦学性能。结果表明:LY12铝合金表面的微弧氧化膜由致密内层和疏松外层组成,在人造海水中微弧氧化膜的摩擦系数比LY12铝合金的低,摩擦磨损达到稳定状态后,前者的平均摩擦系数约为后者的1/3,微弧氧化膜能有效提高LY12铝合金在海水中的耐磨性。  相似文献   

8.
韩德盛  李荻 《材料保护》2007,40(6):7-8,19
在模拟海洋大气环境中进行了系列加速腐蚀试验,考察表面带C1-的LY12铝合金在不同温度下的初期(31 d)腐蚀行为.根据腐蚀形貌、试样增重、最大点蚀深度、腐蚀体系的自腐蚀电位、交流阻抗响应等因素随温度的变化,分析了温度对表面带C1-的LY12铝合金在海洋大气中初期腐蚀行为的影响.结果表明,表面含0.01 mg/cm2 C1-的LJY12铝合金,在5~75℃内很快发生腐蚀,不存在从不发生腐蚀到发生腐蚀的温度门槛值.整体上看,增重和最大腐蚀深度都随着温度的升高而增加,不同温度下LY12铝合金初期腐蚀增重随时间的变化较好地符合Boltzman模型.LY12铝合金在不同温度下初期腐蚀的形貌变化几乎不会引起其厚水膜高C1-自腐蚀体系的电位改变,其Nyquist图是实部收缩的单一容抗弧.  相似文献   

9.
采用10 000r·min~(-1)以上的超高转速搅拌摩擦焊设备,对100mm×80mm×1mm的2014铝合金板进行了对接焊。利用水雾冷却的方法控制铝合金板的变形,得到了表面成型良好且变形较小的焊件,并对焊件的焊接变形和残余应力进行了测定和分析。结果表明:该2014铝合金板的焊缝无减薄,横向最小挠度为0.25mm,纵向最小挠度为0.3mm;焊缝处的残余应力很低,纵向残余应力峰值区间为-43~-83 MPa。  相似文献   

10.
2A12铝合金筋板件T型搅拌摩擦焊工艺及焊后热处理   总被引:3,自引:2,他引:1  
为评价2A12铝合金筋板件搅拌摩擦焊工艺并探寻提高接头强度的途径,进行了2A12铝合金筋板件的T型搅拌摩擦焊焊接工艺试验,并对不同人工时效热处理下焊接接头的微观组织及性能进行了研究.研究表明:采用T型搅拌摩擦焊即可实现2A12铝合金筋板件的成形,当搅拌头旋转速度为750 r/min、焊接速度60mm/min时,接头的抗...  相似文献   

11.
Abstract

Instrumented impact testing was used to investigate the effects of aging on the impact deformation and fracture of different weldments of an AISI type 316L stainless steel plate and a superduplex stainless steel plate. Aging at 800C of metal inert gas MIG and laser beam LB weldments of the 316L stainless steel plate produced a precipitation of sigma phase, which was more intense in the MIG weldments. Correspondingly, the MIG weldments showed a noticeable decrease in impact energy and in impact yield and maximum loads as the aging time was increased. The LB weldments, on the other hand, showed an initial decrease in absorbed energy followed by a noticeable increase, because of the appearance of delaminations during the fracture event. Aging at 900C of the parent metal and of LB and plasma arc PA weldments of the superduplex stainless steel plate produced a precipitation of sigma phase which was much more intense in the parent metal. Both the parent metal and the weldments showed a noticeable decrease in impact energy and in impact yield and maximum loads as the aging time was increased. These weldments were found to be more sensitive to the precipitation of sigma phase than the austenitic stainless steel weldments.  相似文献   

12.
The hot deformation behaviors of the bimodal carbon nanotube reinforced 2009Al(CNT/2009Al)com-posite were studied by establishing processing map and characterizing the microstructure evolution.The results indicate that the grain size in the ultra-fine grained zones was stable during hot deformation,while the coarse grained zones were elongated with their long axis directions tending to be perpendicular to the compression direction.Low temperature with high strain rate(LTHR),as well as high temperature with low strain rate(HTLR)could increase the length/width ratio of the coarse grained zones.However,LTHR and HTLR could cause the instable deformation.The instable deformation at LTHR was induced by severe intragranular plastic deformation and the localized shear crack,while the instable deformation at HTLR resulted from the more deformation component at the coarse grained zones,and the micro-pore initiation due to CNT re-agglomeration at the boundaries between the coarse and the ultra-fine grained zones.  相似文献   

13.
In this paper, the welding residual distortion of aluminum alloy thin plates is predicted using the elasticity-plasticity finite element method (FEM). The factors contributing to the welding buckling distortion of thin plates are studied by investigating the formation and evolution process of welding stresses. Results of experiments and numerical simulations show that the buckling appearance of thin-plate aluminum alloy weldments is asymmetrical in the welding length direction, and the maximum longitudinal deflection appears at the position a certain distance from the middle point of the side edge towards the arc-starting end. The angular deformation direction of thin-plate weldments is not fixed, and such case as the angular deformation value of the arc-starting end being higher than that of the arc-blowout end exists.  相似文献   

14.
Developments in the determination and analytical representation of creep crack growth property data during the past 30 years are reviewed. The testing and data analysis of weldments involve additional complexities, and these are appraised with respect to low alloy steel weldments. Creep crack initiation and growth properties are dependent on creep deformation and rupture ductility characteristics. Consideration is given to the relationship between these properties using data determined for a ½Cr½ Mo¼V/2½CrMo pipe joint.  相似文献   

15.
High temperature deformation and crack resistance of low alloy ferritic grade P22 steel weldments applied in power plants are reported. The creep crack initiation (CCI) and creep crack growth (CCG) data were determined using compact type (C(T)) and C-Shape (CS(T)) fracture mechanics specimens at 550 °C. The deformation and crack growth behaviour of similar weldment zones and significance of CCI and CCG in defect assessment of components were addressed. The weldments with industrially relevant properties were produced in butt welded pipe joint from which test specimens are sampled. The studied material covers a spectrum of microstructures and ductility over the weldment zones to give representative for a welded component. The emphasis is placed on the measurement and particularly analysis of crack initiation for failure assessment in P22 steel weldments. The particular importance of construction of isochronous curves for time dependent failure assessment diagram (TDFAD) method is reported. It is aimed to contribute to establishing guidelines for acceptable methodologies for testing, analysis and assessment of welded components using TDFAD for high temperature service.  相似文献   

16.
The electron beam welding of superalloy FGH4096 and GH4133B was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam weldments. Isothermal compression tests were carried out on electron beam weldments FGH4096-GH4133B alloy at the temperatures of 1020–11140 °C (the nominal γ′-transus temperature is about 1080 °C) and the strain rates of 0.001–1.0 s−1 with the height reduction of 50%. True stress–true strain curves are sensitive to the deformation temperature and strain rate, and the flow stress decreases with the increasing deformation temperature and the decreasing strain rate. The true stress–true strain curves can indicate the intrinsic relationship between the flow stress and the thermal-dynamic behavior. The apparent activation energy of deformation at the strain of 0.6 was calculated to be 550 kJ/mol, and the apparent activation energy has a great effect on the microstructure. The constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling the hot deformation process of FGH4096-GH4133B electron beam weldments. The constitutive equation at the strain of 0.6 was established using the hyperbolic law. The relationship between the strain and the values of parameters was studied, and the cubic functions were built. The constitutive equation during the whole process can be obtained based on the parameters under different strains. Comparing the experimental flow stress and the calculated flow stress, the constitutive equation obtained in this paper can be very good to predict the flow stress under the deformation temperature range of 1020–1140 °C and the strain rate range of 1.0–0.001 s−1.  相似文献   

17.
The fatigue life of full-penetration and partial-penetration 5 and 25  mm thickness AlMg4.5Mn (AA5083) aluminium alloy butt weldments was investigated under ( R = 0 and R = − 1) constant amplitude loading. The fatigue lives of the tested specimens were predicted using an analytical model which estimated both the crack initiation and crack growth portions of the total fatigue life. The fatigue life of partial-penetration weldments was found to be substantially less than that of full-penetration weldments because of the greater stress concentrations of the incomplete joint penetration and the consequent absence of a substantial crack-initiation life period. Tensile mean stresses ( R = 0 versus R = − 1-test conditions) markedly reduced the fatigue life of the weldments studied and greatly diminished the duration of the fatigue crack growth period. The extra material provided by the weld reinforcement noticeably increased the fatigue life of the partial-penetration weldments. Weld angular distortion-induced bending stresses greatly affected the smaller thickness (5  mm) full-penetration weldments offsetting the fatigue strength bonus anticipated for small-size weldments. Except for the predictions for R = − 1 full-penetration weldments at long life, which the analytical model underestimated, the agreement between experiment and analytical prediction was within a factor of 2, that is, as good as can be generally expected.  相似文献   

18.
Abstract

Study of local material properties and damage mechanisms are undertaken in order to characterise weldments that show significant variation of properties across weldments. One of the methods to characterise the local variation of properties is microtensile (MT) testing of specimens machined out of specific narrow zones of weldments. The literature data, though limited, on microtensile specimen testing are reported at their low temperature behaviour. On the other hand, systematic study of crossweld local material properties at high service temperatures have not yet been reported. In the present study, MT tests are conducted across similar welds of P22 and P91 steels at 550 and 600°C, respectively. In order to study deformation mechanisms and the role of surface condition on properties, specimens with different surface conditions (i.e. machined, polished and electropolished surfaces) are tested. Two different loading rates of 0.2mm/min and 0.5mm/min are used to study the effect of loading rate on deformation and mechanical properties. Variations of material properties yield strength (Rp0.2) and ultimate tensile strength (Rm), for the weldments are presented as a function of surface conditions of specimens and loading speeds. Higher loading rates yield higher values of Rp0.2 and Rm, and specimens with machined and polished surfaces show consistent and higher values of Rp0.2 and Rm compared to specimens with an electropolished surface finish. Deformation behaviour is studied on the side surfaces of tested microtensile specimens using an SEM. Deformation is correlated to microstructural constituent that is observed on specimen side surfaces. The metallographic information is used to interpret the variation of mechanical properties determined in tension at high temperatures. The MT data are compared with standard tensile data obtained on specimens with simulated microstructures. The prospects of using MT tests for characterising the material at high temperatures and feasibility of use of data for assessment of components under service loading conditions are reported.  相似文献   

19.
The term pseudo-intercrystalline brittleness is proposed to describe a fracture mechanism which can occur in poly-crystalline alloys which contain a fine dispersion of a second phase. If narrow particle-free zones develop along grain boundaries, separation can occur after large amounts of plastic strain, which is highly localized to the vicinity of grain boundaries. Since the hardened grain interior does not contribute to plastic deformation the total plastic deformation to fracture and fracture toughness remain small. Quantitative models are proposed to interpret the micromechanism of fracture and to describe the grain-size dependence of fracture toughness. The fracture of precipitation hardening aluminum alloys, creep resistant and structural steels are discussed in terms of the models. Finally an interpretation of the mechanism of stress-relief cracking in steel weldments is given.  相似文献   

20.
This paper presented the characteristics of residual stresses in welds of similar or dissimilar steel weldments by carrying out three-dimensional (3-D) thermal elastic–plastic finite element (FE) analyses. Moreover, residual stress behavior in welds of the weldments under superimposed tensile loads was further investigated. The materials used in this investigation were SM400, SM490, SM520 and SM570, widely used structural steels in welded structure. Results show that the maximum longitudinal residual stresses in welds of the similar steel weldments increase with increasing yield stress of the steel welded (SM400 < SM490 < SM520 < SM570). When tensile loads are superimposed to edges of the weldments, the maximum longitudinal residual stresses are increased to a higher value. In case of the dissimilar steel weldments, the difference between the longitudinal residual stresses in welds increases with increasing yield stress of the steel welded together with SM400 (SM490 < SM520 < SM570). When tensile loads are superimposed to edges of the weldments, same pattern is noted for the longitudinal stresses in welds and the difference is almost the same as that between the longitudinal residual stresses in welds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号