首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
It is well known that the air-void structure of hardened concrete has substantial effects on the mechanical properties and durability of concrete. In this study, laboratory evaluations were conducted to quantify the effects of air-entraining agent (AEA) and silica fume on the air-void characteristics of wet-mix shotcrete (WMS) before and after shotcreting process. For this purpose, a high-resolution image analyzer capturing elaborate graphical layouts of air-void structure using the linear transverse method was employed. Also, this study examined the effects of air-void characteristics, such as air content and spacing factor, on the strength and permeability of WMS. Based on the findings of this study, it can be concluded that: (1) shotcreting process considerably reduces overall air contents in WMS; (2) incorporating AEA with a 4.5% silica fume replacement ensures both satisfactory spacing factor and good retention of small entrained air bubbles even after shotcreting, which may improve the freeze-thaw and scaling resistance; (3) the compressive and flexural strengths of WMS were reduced as the air content increased and average spacing factor decreased; and (4) the air content affected the permeability of WMS, but no consistent correlation was found between spacing factor and permeability.  相似文献   

2.
The increased use of advanced coal-burning technologies for power generation, such as circulating fluidized bed combustion (CFBC), results in new waste products. The potential for using CFBC fly ash in air-entrained concrete was investigated in order to assess the influence of CFBC fly ash on the microstructure of air voids in hardened concrete. A special specimen surface preparation technique for contrasting the image and enabling measurements of air voids size and distribution using an automated image analysis procedure was used. The microstructure of air voids was evaluated on the basis of the total air content, the spacing factor, and the specific surface of air voids. It was found that a satisfactory air void system in concrete could be produced when using CFBC fly ash for partial replacement of cement. The air-void system was characterized by a decreased specific surface of voids and an increased spacing factor.  相似文献   

3.
Several automated procedures for the characterization of the air-void system of hardened concrete rely on a contrast enhancement step to make air-voids appear white and aggregates and paste appear black. Pixels in the digital image darker than a selected threshold level are classified as non-air, pixels brighter are classified as air. Laboratories that perform air-void testing typically have a large number of samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and then comparing results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed and the threshold optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative approach based on more rigorous digital image accuracy assessment methods employed by the remote sensing/satellite imaging community.  相似文献   

4.
In a recent survey, the durability and condition of 29 in service pervious concrete pavements built in a wet, hard freeze environment were assessed, and 33 core samples were collected. Following up on this survey, this paper identifies some of the common subsurface distresses observed in the core samples with optical microscopy instruments. In the distressed samples, cracks went through the aggregate, paste, and interfacial transition zone (ITZ). The cracks were similar to cracks in conventional concretes that formed due to known freeze/thaw damage. In addition to cracking patterns, it was discovered that none of the 33 pervious concrete samples contained the recommended quantity or spacing of entrained air bubbles. There was a lack of entrained air bubbles despite the addition of air-entraining admixtures to all of the pervious concrete mixtures. It is unknown if the lack of entrained air bubbles contributed to the cracks in the pervious concretes.  相似文献   

5.
对玄武岩纤维-矿渣粉-粉煤灰混凝土(BF-SP-FAC)进行了单轴抗压试验、劈裂抗拉试验、冻融循环试验、气孔结构测试试验和SEM分析。研究了不同冻融次数下BF-SP-FAC冻融损伤量、抗压强度、抗拉强度的变化,分析了气孔结构参数(含气量、气孔比表面积、气泡间距系数和气泡平均弦长)与BF-SP-FAC抗压强度、抗拉强度、冻融损伤量的关系,运用灰关联熵分析法讨论了BF-SP-FAC气孔结构参数对抗压强度、抗拉强度、冻融损伤量影响的主次关系。结果表明:相同冻融次数下,与其他纤维掺量相比,玄武岩纤维掺量为0.18vol%时,BF-SP-FAC抗冻性能较好,抗压强度和抗拉强度最高;在相同玄武岩纤维掺量下,随含气量、气泡间距系数、气泡平均弦长的增大,BF-SP-FAC抗压强度和抗拉强度减小,而冻融损伤量增大;随气孔比表面积的增加,BF-SP-FAC抗压强度和抗拉强度增大,而冻融损伤量减小。气孔比表面积是影响BF-SP-FAC强度的最主要因素,而气泡平均弦长是影响BF-SP-FAC冻融损伤量的主要因素,最小灰熵关联度分别为0.998和0.993。气孔结构参数与强度、冻融损伤关系的建立,可预估混凝土的强度与冻融损伤。   相似文献   

6.
Air voids are entrained in concrete for protection of constructed elements, especially highway pavements, against freeze-thaw damage. Entrained air void systems inadvertently reduce the compressive strength of the concrete. The present study describes development of an analytical model for evaluation of the effects of entrained air void system on the compressive strength of concrete. The model developed here will assist in predicting the compressive strength of concrete for specified mix designs. The constitutive relationships for air-entrained concrete were established by considering a micro cracked porous material with randomly distributed circular air voids and uniformly oriented cracks from the air voids. Linear elastic fracture mechanics was employed to explain the evolution of damage due to the individual voids and cracks that emanate from such voids. The damage model considers the interactions among the voids and cracks during various stages of loading. The analytical results from this study were evaluated through an experimental program for comparison of the computed and measured compressive strengths. A wide range of samples were examined that included concretes with air contents ranging from 2% to 13% air by volume of concrete. The experiments involved microscopic determination of air content and spacing factors as well as compressive strength tests for all the concrete samples.  相似文献   

7.
The frost resistance of concrete is a function of the concrete constituent properties, entrained air-void system parameters and environmental exposure history. However, only a single maximum value for the void spacing factor is specified for all types of concrete by code writing bodies for successful protection against freezing damage. The advent and utilisation of new materials over the recent years warrant reevaluation of the validity of this single pass/fail criteria established more than 50 years ago. Here, a poromechanical model, capable of incorporating concrete constituent properties, environmental exposure and air-void spacing factor, has been used to determine the role of various concrete constituents and air-void system on the damage propensity of concrete exposed to freezing temperatures. It is found that a maximum threshold of acceptance, for instance a 0.2 mm spacing factor, may not be adequate for all concrete mixture designs subject to various cooling conditions. The model also suggests that concrete with low-porosity, low-permeability mortar matrix, a characteristic property of mortar containing supplementary cementitious materials and/or low water to cement ratio, can perform satisfactorily under freezing temperatures even with a spacing factor greater than the recommended value. If utilised for design, this model will give more freedom to practitioners in ensuring concrete durability by controlling multiple factors including the concrete mixture components and proportions rather than just satisfying a single pass/fail criterion for void spacing factor for all concrete mixtures.  相似文献   

8.
This paper discusses the usefulness of image analysis techniques in order to assess the characteristics of the air-void system in concrete. Test results indicate that such a technique can correctly assess the air-void characteristics as defined in ASTM C 457 Standard test method. However, the accuracy of the test results is not significantly improved as compared with the manual technique and the image analysis method must be very carefully validated before being used as a routine procedure. Test results also indicate that the image analysis technique failed to correctly assess the size-distribution of air voids and, for that reason, this technique cannot be used to provide a better estimate of the real spacing of air voids than the commonly used ASTM C 457 spacing factor.  相似文献   

9.
The scope of this paper is to investigate by an automatic image analysis technique the dispersion of phases in concrete. Three morphological and statistical tools were used: co-occurrence matrices, and simple and crossed-covariance. It was shown (1) that there is a repulsion between gravel, (2) that gravel and air-voids are surrounded by matrix (cement paste and sand), and (3) that the dispersion of gravel and air-voids is perfectly uniform.  相似文献   

10.
This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test are conducted. Results were not originally presented in a way, which made comparison possible. Here the amount of scaled material is depicted as function of air voids parameters: total air content, specific surface, spacing factor, and total surface area of air voids. The total surface area of air voids is proportional to the product of total air content and specific surface. In all 4 cases, the conclusion is concurrent that the parameter of total surface area of air voids performs equally well or better than the spacing factor when linking air void characteristics to frost resistance (salt frost scaling). This observation is interesting as the parameter of total surface area of air voids normally is not included in air void analysis. The following reason for the finding is suggested: In the air voids conditions are favourable for ice nucleation. When a capillary pore is connected to an air void, ice formation will take place in the air void, being feed from the capillary, but without pressure build-up in the capillary. If the capillary is not connected to an air void, ice formation will take place in the capillary pore, where it can generate substantial pressure. Like this, frost resistance depends on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor.  相似文献   

11.
为使模袋混凝土在大流动性下达到高抗冻性,应用正交试验法研究了含气量、消泡剂和增稠剂对混凝土工作性和抗冻性的影响。结果表明,含气量和消泡剂掺量是影响模袋混凝土相对动弹性模量的显著因素,且含气量影响效果显著大于消泡剂掺量,增稠剂掺量对相对动弹性模量的提高幅度较小。消泡剂和增稠剂复掺能够达到协同改善模袋混凝土工作性、孔结构和抗冻性的效果,当含气量为5vol%~6vol%时,0.15wt%消泡剂和0.03wt%增稠剂复掺使模袋混凝土含气量损失率减小了64.28%、扩展度损失率减小了55.04%;主要消除有害大气泡数量达81.38%,增加小气泡数量达14.89%,使气泡间距系数减小了11.54%,气泡比表面积减小了20.49%,相对动弹性模量增大了11.97%。气泡间距系数和气泡比表面积均与相对动弹性模量具有良好的相关性;当气泡间距系数不大于361 μm、气泡比表面积不小于16.13 mm?1时,模袋混凝土抗冻等级可达F300。通过对试验结果的回归分析,建立了模袋混凝土抗冻性预测模型。   相似文献   

12.
基于体视学和几何概率理论给出了引气混凝土三维气泡尺寸重构方法,由二维平面上气泡截面圆的直径分布计算气孔的实际尺寸分布,并生成了一个多尺度分布的立方体模型结构验证了该三维重构方法的合理性.然后,使用邻近粒子表面最近间距的解析解研究了气泡细度和混凝土含气量对邻近气泡表面最近间距平均值的影响,并与用传统方法得到的气泡间距因子进行了比较.结果表明,在含气量相同的条件下,用传统方法得到的气泡间距因子是邻近气泡表面最近间距平均值的3-4倍.该方法的给出,为从二维截面上获得的引气混凝土中的气泡截面圆信息获取实际气泡在三维空间中的气泡间距信息提供了依据.  相似文献   

13.
A novel limit-state function using Powers’ models is developed to assess current freeze-thaw exposure categories and design criteria for concrete placements established by American, Canadian, and European standards organizations. Based upon performance assessments by standardized accelerated testing, the current specifications are shown to provide sufficient levels of reliability pending an appropriate mean air-void spacing factor. Sensitivity assessments of the model demonstrate that the spacing factor, saturation state, permeability, and freezing rate significantly influence the response of the air-entrained concrete. The model is validated with a large dataset derived from standard freeze-thaw tests, and an equation is developed to probabilistically design concrete for freeze-thaw resistance.  相似文献   

14.
An experiment was performed to investigate the properties of the hardened paste of fly ash by alkali activation and to determine the possible use of the paste in the production of lightweight aggregates. The highest compressive strength was 33.9 MPa, for paste with 10% NaOH, 15% sodium silicate, and 5% MnO2, cured at room temperature after 24 h of moisture curing at 50 °C. The hardened paste of fly ash was granulated to produce AFLA (alkali-activated fly ash lightweight aggregate). AFLA exhibited specific gravity (SSD, OD), water absorption, unit weight, and solid volume percentages of 1.85 (SSD), 1.66 (OD), 11.8%, 972 kg/m3, and 58.6%, respectively. The results of the heavy metals leaching test met US EPA regulations. The concrete using AFLA exhibited a compressive strength of 26.47 MPa and good freeze–thaw resistance at 6.0% entrained air content.  相似文献   

15.
This short paper will present a two-dimensional (2D) model of concrete material, based on probabilistic models: it is a combination of a Voronoi tessellation for the gravel, followed by a Boolean model of spherical grains for the air-voids, with elimination of the air-voids–gravel intersections so that there is no contact between them. The model was tested via crossed-covariance. Results on true and simulated structures are in good agreement. This is a first step towards a 3D model.  相似文献   

16.
This paper illustrates the use of automatic image analysis technique to investigate the morphology of cement, concrete and fibre-reinforced concrete. First the methods to be used for powders and secondly for mortar and concrete are introduced. The dispersed phases are characterized by classical morphological parameters: these also enable to accede to the hydration process. The covariances give quantitative information on the homogeneity and dispersion of the different components: gravel, air-voids and cement paste. Air-voids are characterized by granulometric distributions and their mean free paths. Rose of directions gives information on feature orientation: fibres, microcracks for fibre-reinforced concrete, etc. Finally probabilistic models can be used to simulate the microstructure of such materials.  相似文献   

17.
In concrete, fly ash is applied to a task-oriented improvement of different properties. Besides the advantages, e.g. the improvement of the rheology of the fresh concrete or the density of the hardened concrete, some investigations and the experience from practice indicate that some fly ashes probably influence the formation and stability of artificially entrained air voids. The reason lies presumably in the fraction of unburned carbon, a minor component of the fly ash. To identify the causes, seven fly ashes from European power plants were investigated. The fly ashes were characterized and mortar and concrete tests were conducted to identify specific fly ash parameters which might be responsible for the impaired formation and stability of the air voids. Furthermore, it was examined whether the foam index test is applicable for the assessment of the air entraining agent demand and whether an adequate accuracy of the results is given. On the basis of the results it was also examined whether the mortar tests or a fly ash specific parameter can be applied as an alternative prediction tool to assess the air entraining agent demand for an air entrained concrete.  相似文献   

18.
The freeze–thaw resistance of all cement-based materials is improved by incorporating a fine air bubble system in them. For acceptable life expectancy, incorporated air bubble volume should be about 25% of the cement paste. The specific surface of the air bubble system need to be above 25 mm2/mm3 and a spacing factor below about 0.16 mm. Powers explained these on the basis of his saturated flow hydraulic pressure mechanism. According to Powers’ mechanism, the chemical nature of the air-entraining agent has no part in this improvement in performance.Helmuth, one of the principal co-workers of Powers, has questioned a number of assumptions of Powers’ mechanism. Most importantly, Helmuth showed that ice penetrates concrete as dendritic crystals. Furthermore, a number of workers have shown that the chemical nature of the air-entraining agent affects the freeze–thaw resistance of cement-based materials. Some air-entraining agents do not improve the freeze–thaw resistance even though they entrain air of the required characteristics.In this paper, a modified and expanded version of Helmuth’s model of ice penetration in concrete is utilised to explain the action of air bubbles. All air bubbles contain a layer of water on their inner surfaces. Surface tension spreads out water in the air bubbles as annular layers. Air-entraining agents may form or precipitate hydrophobic layers on air bubble surfaces. When an ice dendrite reaches an air bubble, the annular water layer freezes to an annular layer of ice. The hydrophobic layer on the air bubble surface reduces the ice–paste bond. Under this circumstance, the ice layer within the air bubble grows. During this growth, water is withdrawn from the surrounding by suction. A water movement under suction does not produce any expansive pressure. Withdrawal of water to the air bubbles explains the beneficial action of air entrainment. The specific efficiency of air-entraining agents is explained by the different degree of hydrophobicity produced by air-entraining agents.  相似文献   

19.
This paper employs a numerical simulation strategy to elucidate the influence of phase change materials (PCMs) on the thermal response of concrete pavements. Simulations of both the early- and late-age response of concrete pavements containing microencapsulated PCMs, with considerations of mixture proportions, PCM types, and structural and environmental boundary conditions, are carried out. The latent-heat response of PCMs is explicitly integrated into the model. The early-age simulations show significant reductions in peak hydration temperature and the heating/cooling rates when PCMs, either as a partial replacement of the cement paste or fine aggregates, are incorporated in concrete, resulting in reduced cracking probabilities. Simulations on mature pavements also indicate temperature and curling stress reductions when appropriate PCMs are used. PCM type(s) and dosage, depending on the imposed external temperature regimen, can be chosen based on the model to reduce the magnitude of critical stresses at both early- and late ages. The numerical model thus enables engineers and designers rationally design crack-resistant concrete pavements.  相似文献   

20.
单晶高温合金空心叶片是航空发动机的重要部件, 其内腔结构是采用陶瓷型芯制备的。随着航空发动机推重比提高, 型芯结构越来越复杂, 传统制备工艺受限, 光固化3D打印陶瓷型芯技术为复杂结构型芯的制备提供了一种可行方案。为了改善光固化3D打印陶瓷型芯因台阶效应导致的表面粗糙度较大的问题, 本研究利用固含量体积分数63%的硅基型芯浆料进行光固化3D打印型芯, 并在1100~1300 ℃对型芯素坯进行烧结, 对烧成的硅基陶瓷型芯的微观结构、元素分布、相组成、型芯打印面和打印堆积方向的表面形貌和粗糙度进行分析。研究发现型芯打印面平整, 无明显表面缺陷, 1100、1200和1300 ℃烧结型芯的打印面粗糙度分别为1.83、1.24和1.44 μm; 片层堆积方向的表面有片层结构特征, 片层间出现微裂纹, 1200 ℃以上烧结的型芯表面粗糙度达到空心叶片使用要求(Ra≤2.0 μm)。结果表明不同烧结温度会改变型芯烧结过程中的液相含量、莫来石生成量、莫来石生成形态和颗粒间玻璃相的分布, 从而对光固化3D打印硅基陶瓷型芯的表面粗糙度产生明显影响。光固化3D打印陶瓷型芯技术结合烧结工艺能制备出满足先进空心叶片用硅基陶瓷型芯表面要求的粗糙度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号