首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
刘家良  李娜 《材料导报》2018,32(Z1):121-123
报道了一种合成具有巯基官能团修饰的Au/Fe_3O_4磁性纳米粒子的新方法。采用共沉淀法制备Fe_3O_4磁性纳米颗粒,并在此基础上用聚(烯丙胺)溶液还原HAuCl4,制得Au/Fe_3O_4磁性核壳纳米颗粒,再用3-巯基-1-丙磺酸钠修饰Au/Fe_3O_4磁性纳米粒子,最后得到具有巯基官能团稳定的Au/Fe_3O_4磁性纳米粒子。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、振动样品磁强计(VSM)分别对产物的微观结构及磁性特征进行表征。  相似文献   

2.
以二价铁盐和三价铁盐为原料,采用化学共沉淀法制备了磁性纳米四氧化三铁(Fe_3O_4),并采用3-氨基丙基-三甲氧基硅烷对其进行氨基化,制备出氨基化纳米Fe_3O_4。对氨基化纳米Fe_3O_4进行了表征及分析。研究结果表明:氨基已成功在纳米Fe_3O_4颗粒表面修饰,制得的氨基化纳米Fe_3O_4不含羟基铁等其他铁氧化物,改性后材料的磁性并没有发生明显变化。同时,研究了氨基化纳米Fe_3O_4吸附水中氟离子(F-)的动力学吸附机理,对F-的平衡吸附容量为4.7393mg/g,吸附符合动力学二级方程。  相似文献   

3.
采用溶剂热法制备表面修饰柠檬酸的磁性Fe_3O_4纳米粒子和磁性Fe_3O_4纳米粒子,并对其粒径大小、晶体结构和磁性能进行表征,并考察其用于DNA提取分离的效果。结果表明,两产物均为立方晶系的Fe_3O_4纳米颗粒。磁性Fe_3O_4纳米粒子和表面修饰柠檬酸的磁性Fe_3O_4纳米粒子的平均粒径为411.1nm和586.3nm。当全血体积200μL、磁性纳米粒子用量2.0mg时,提取的DNA浓度最高分别为270.6ng/μL(Fe_3O_4)和466.4ng/μL(Fe_3O_4@柠檬酸)。  相似文献   

4.
为解决天然壳聚糖(CTS)作为CO_2开关型乳化剂时响应破乳不完全的问题,对CTS进行磁性Fe_3O_4纳米粒子的接枝改性;采用红外光谱和扫描电子显微镜对接枝改性产物进行表征,并测试其CO_2响应性、乳化性能及破乳效果。结果表明:磁性Fe_3O_4纳米粒子成功接入CTS,并在水中形成CTS包覆磁性Fe3O4纳米粒子的聚集体颗粒;Fe_3O_4纳米粒子的接入并不会影响壳聚糖的CO_2响应性和乳化性能;磁化改性CTS制备的乳液在CO_2作用下,不能完全破乳的情况可在磁性协同作用下发生改善,达到完全的破乳分层。  相似文献   

5.
采用溶剂热法制备了Fe_3O_4纳米团簇,利用溶胶凝胶法对其进行SiO_2包覆,然后用羧基硅烷化试剂进行羧基化修饰,使其表面连接NTA,引入不同浓度Ni~(2+),制备了Fe_3O_4@SiO_2@COOH@NTA-Ni磁性纳米功能组装体。并对制备的各中间体进行了形貌、Zeta电位、化学组成、羧基密度、Ni~(2+)含量、磁性能的表征。最后,我们利用该磁性纳米功能组装体检测荧光素标记的His标签蛋白和非His标签蛋白,研究了组装体本身荧光对于检测的影响。结果表明Fe_3O_4纳米团簇和Fe_3O_4@SiO_2具有良好的分散性,羧基化后表面羧基密度可达0.5μmol/mg,各中间体在去离子水中有良好的稳定性,1g磁性纳米功能组装体的Ni~(2+)含量高达8.693×10~(-5)mol,具有较高的饱和磁化强度并保持了超顺磁性;同时,我们通过加入洗脱液,检测上清液,解决了该磁性纳米功能组装体自身荧光对检测的影响,从而拓展了其在药物筛选、酶检测等领域的应用。  相似文献   

6.
为研究一种应用于磁稳定流化床反应器的新型高分子磁性微球的制备方法及性能,采用悬浮聚合法制备了Fe_3O_4纳米粒子包覆聚苯乙烯磁性微球,研究了搅拌速率、加入磁性Fe_3O_4纳米粒子的时间等因素对复合微球粒径及性能的影响,运用扫描电子显微镜(SEM)、X射线衍射(XRD)、振动样品磁强计(VSM)、热重(TGA)等测试手段,表征了磁性聚苯乙烯微球的形貌特征、结构、粒径、磁学性能及Fe_3O_4的包覆量.实验结果表明:在搅拌转速为600 r/min,80℃保温10 min加入修饰Fe_3O_4纳米粒子,制备所得的磁性聚苯乙烯微球为粒径分布均匀的球状微粒;Fe_3O_4的包覆量达到5%,最高饱和磁化强度为3.73 emu/g,具有较好的超顺磁性,可应用于磁稳定流化床反应器.  相似文献   

7.
《功能材料》2021,52(8)
首先通过溶剂热法制备了磁性Fe_3O_4纳米粒子,随后采用SiO_2对其进行包覆形成了Fe_3O_4@SiO_2核壳磁性纳米材料。通过XRD、SEM、TEM、磁性能分析和吸附性能分析等对Fe_3O_4@SiO_2核壳磁性纳米材料进行了表征。结果表明,合成的Fe_3O_4@SiO_2核壳磁性纳米材料具有Fe_3O_4和SiO_2两种晶型结构,SiO_2成功包覆在磁性Fe_3O_4纳米粒子上,SiO_2并没有对各组织的结构和成分产生较大影响;Fe_3O_4@SiO_2核壳磁性纳米材料的粒径在200~400 nm左右,且呈核壳式的结构,内层Fe_3O_4纳米粒子的颜色较深,外层SiO_2的颜色较浅;Fe_3O_4@SiO_2核壳磁性纳米材料在室温下的饱和磁化强度为76.31 A·m~2/kg,剩余磁化强度几乎为0;Fe_3O_4@SiO_2核壳磁性纳米材料对Cu(Ⅱ)的吸附在1 500 min时达到饱和,去除率最高为63%,最大吸附容量可达120 mg/g,其对Cu(Ⅱ)具有较好的吸附效果。  相似文献   

8.
制备了Fe_3O_4包覆碳纳米管(Fe_3O_4-CNT)水基磁性纳米流体,采用透射电子显微镜(TEM)表征其分散性,静置观察其稳定性,并对磁场中Fe_3O_4-CNT磁性纳米流体的热导率进行了研究。结果表明,Fe_3O_4-CNT磁性纳米流体能在较高磁场强度的磁场中稳定存在;随着磁场强度的增加,Fe_3O_4-CNT纳米颗粒成链和CNT定向对Fe_3O_4-CNT磁性纳米流体热导率增加先后起主导作用;由于碳纳米管的各向异性,在一定磁场方向下,Fe_3O_4-CNT形成的导热网链使磁性纳米流体热导率显著增加;Fe_3O_4包覆在碳纳米管上由于碳纳米管具有较大的长径比,能够有效的降低Fe_3O_4-CNT在磁场中链的长度以及成链速度,进一步提高了基液的热导率。  相似文献   

9.
以化学共沉淀法制备出Fe_3O_4磁性纳米粒子,通过壳聚糖(CS)修饰制备得Fe_3O_4/CS磁性微球,再将Fe_3O_4/CS磁性微球与表面富含羧基的碳量子点(CQDs)连接,合成了以碳量子点为荧光材料的磁性荧光双功能纳米微球Fe_3O_4/CS@CQDs。经过红外光谱仪(FT-IR)、X射线衍射仪(XRD)、荧光分光光度计、振动样品磁强计(VSM)、荧光显微镜及透射电子显微镜(TEM)对该纳米材料表征。结果表明:双功能纳米微球Fe_3O_4/CS@CQDs饱和磁化强度达到13.66emu/g,分散性良好,粒径约为45nm,具有良好的荧光性能及磁响应性,有望取代以半导体量子点作为荧光材料的磁性复合材料,在生物医学等方面得到广泛应用。  相似文献   

10.
以FeCl_3·6H_2O和FeSO_4·7H_2O为原料,制得磁性Fe_3O_4纳米颗粒。利用静电吸引合成了双甘膦包裹的Fe_3O_4/双甘膦(PMIDA),使磁性微球表面连上大量的功能基团羧基,再与乙二胺通过键合使磁性微球外面修饰着氨基。将修饰过巯基乙酸的量子点CdSe/CdS与磁性微粒混合,量子点表面的羧基与Fe_3O_4表面的氨基进行连接。对其进行荧光分光光度计,透射电子显微镜(TEM)、振动样品磁强计(VSM)和荧光显微镜等表征,结果表明:复合后的微球具备很好的发光性能和优越的磁性能。  相似文献   

11.
本文系基于Fe_3O_4磁性纳米粒子建立一种新颖的生物传感器显色法用于高灵敏检测四环素(TCs)。实验显示四环素具有强烈的和Fe_3O_4络合的倾向从而抑制Fe_3O_4 MNPs-H_2O_2-TMB显色体系。利用水热法合成Fe_3O_4纳米酶,通过FT-IR、XRD、SEM、TEM等手段对Fe_3O_4纳米酶进行表征,并将该材料用于四环素类抗生素的快速检测。同时本文还优化了各种参数。在最佳条件下,方法定量限为0.035-0.043μg,回收率为90.9%~95.6%。  相似文献   

12.
以Fe_3O_4、TEOS、AgNO_3为原料,采用葡萄糖做还原剂,在氯化胆碱(ChCl)水溶液中通过超声处理-化学镀法制备Fe_3O_4@SiO_2-Ag核壳纳米粒子。研究了AgNO_3浓度、ChCl浓度、pH值以及反应温度对银含量的影响。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)对Fe_3O_4@SiO_2-Ag的结构和形貌进行分析表征。将纳米粒子作为催化剂应用于烯丙基胺类化合物的合成反应,结果显示,当银含量为0.4%(wt,质量分数)时,催化效率可96%。  相似文献   

13.
康路  胡平  杨军  王华  杨帆  杜金晶  杨占林 《材料导报》2015,29(21):132-136, 144
近年来,由于磁性纳米粒子在实际应用中发挥越来越重要的作用,有关磁性纳米粒子的应用受到科学界广泛关注,特别是生物医学领域。由于磁性纳米Fe_3O_4粒子制作简单且晶体对细胞无毒,在生物医药领域大量应用,磁性纳米Fe_3O_4粒子主要通过表面包覆成为免疫磁性微球进行使用。简述了磁性纳米Fe_3O_4粒子的制备方法,重点综述了近些年磁性纳米Fe_3O_4粒子在生物医学上的应用,包括磁共振成像技术、磁分离技术、靶向药物载体技术、肿瘤热疗技术、造影剂技术,并且阐述了磁性纳米Fe_3O_4粒子的发展前景。  相似文献   

14.
以形状记忆环氧树脂EP5-60%为基体,掺杂改性磁性Fe_3O_4纳米粒子,制备了一系列磁和热双重响应纳米Fe_3O_4/环氧树脂形状记忆复合材料。红外测试表明,KH550成功改性了磁性Fe_3O_4纳米粒子,DSC测试确定热响应回复温度为80℃。当改性磁性Fe_3O_4纳米粒子质量分数为7%时,Fe_3O_4-7%/EP5-60%复合材料力学性能最佳,拉伸强度为29 MPa、断裂伸长率为37.3%。弯曲回复测试Fe_3O_4-7%/EP5-60%热响应形状记忆性能,其热响应形状记忆固定率(R_f)为99%,回复率(R_r)为97.9%。录像法记录Fe_3O_4-7%/EP5-60%磁响应形状回复过程时,25 min内能回复形变,磁响应回复率为93.3%。以上结果表明,利用Fe_3O_4纳米粒子的磁性,通过改性并控制好掺杂含量,可以制备性能较好的磁和热双重响应的纳米Fe_3O_4/环氧树脂形状记忆复合材料。  相似文献   

15.
结合静电纺丝和水热合成技术制备PVA/Fe_3O_4磁性纳米纤维,空气气氛中在不同煅烧温度下制备出一系列α-Fe_2O_3纳米纤维。采用扫描电子显微镜(SEM),X射线衍射仪和超导量子干涉仪对不同煅烧温度下制得的α-Fe_2O_3磁性纳米纤维进行形貌与性能表征。结果表明,PVA/Fe_3O_4复合磁性纳米纤维在600~800℃的煅烧温度区间内可获得稳定的α-Fe_2O_3磁性纳米纤维,纤维形貌从中空管状结构逐渐转变为沟槽状结构,纤维中的α-Fe_2O_3粒子具有不同的晶粒尺寸,结晶随温度升高而变好,且具有不同的磁性能。制备的α-Fe_2O_3磁性纳米纤维在水处理等方面具有潜在应用。  相似文献   

16.
合成端氨基超支聚合物(HBPA)后与"一锅法"合成的氨基修饰磁性纳米微球通过戊二醛交联得到多氨基功能化磁性纳米吸附剂。通过傅里叶红外光谱、XRD光谱和热重分析表明端氨基修饰磁性纳米吸附剂(Fe_3O_4@HBPA)成功制备。探讨了Fe_3O_4@HBPA吸附剂对模拟废水中Cu~(2+)和甲基橙的吸附性能。Fe_3O_4@HBPA对Cu~(2+)和甲基橙的吸附时间为120min,温度30℃,吸附剂用量为10.0mg,pH=5.0时对Cu~(2+)的吸附效果最佳,pH大于5,对甲基橙吸附效果都较佳。Fe_3O_4@HBPA吸附剂对Cu~(2+)和甲基橙吸附速率较快,在10min左右就基本达到吸附平衡,温度对Cu~(2+)和甲基橙的吸附影响不大。结果表明端氨基超支聚合物修饰的磁性纳米吸附剂对Cu~(2+)和甲基橙具有较好的吸附能力。  相似文献   

17.
采用一步法在高压反应釜中合成了粒径均一、荧光性能优异的碳量子点(CQDs)。再以化学共沉淀法制备纳米Fe_3O_4粒子,通过聚多巴胺(PDA)修饰制备得Fe_3O_4/PDA。本实验首次以PDA为桥梁,将Fe_3O_4纳米颗粒与CQDs连接,合成了以CQDs为荧光材料的多功能复合微球Fe_3O_4/PDA@CQDs。经过傅里叶变换红外光谱仪、X射线衍射、振动样品磁强计、透射电子显微镜及荧光分光光度计等对该纳米复合物表征。结果表明:CQDs粒径约10nm,连接后的复合纳米粒子粒径在40nm左右,分散性良好且兼具优异的磁响应性和荧光发光性能。该复合微球无毒且生物相容性高,可以取代半导体量子点磁性纳米复合材料并广泛应用于药物分离、可视化和靶向治疗等生命科学领域。  相似文献   

18.
采用化学共沉淀法,以FeC13.6H2O和FeSO4·7H2O为原料制备磁性Fe3O4纳米颗粒,采用3-氨丙基三乙氧基硅烷(APTES)、丙烯酸丁酯(BA)和无水乙二胺(EDA)对其进行修饰,制备了三代表面氨基化的磁性Fe3O4树状分子纳米颗粒,并对其进行结构表征与性能测试.结果表明:树状分子逐代修饰在磁性颗粒表面,氨基含量逐代增加,分别为0.41、0.69和0.87mmol/g; Fe3O4纳米颗粒平均尺寸在12nm左右,修饰后的三代磁性纳米颗粒的粒径逐代增加,分别为14、27和40nm左右;三代产品仍具备较高的饱和磁化强度,展现出了典型的超顺磁性.这种氨基功能化的磁性纳米粒子在细胞分选、固定化酶和靶向药物等诸多领域有着巨大应用潜力.  相似文献   

19.
在水相中,采用化学共沉淀法以FeCl_3·6H_2O和FeSO_4·7H_2O为原料合成超顺磁性Fe_3O_4纳米粒子,将磁性纳米粒子加入到正硅酸乙酯(TEOS)的醇水体系中,使磁性纳米粒子表面生成一层无定型SiO_2包覆层,再以3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPTS)对其进行修饰,使磁性纳米粒子表面接入丰富的功能双键,与巯基乙酸、乙二胺修饰后的CdSe/CdS量子点连接,得到磁性荧光双功能纳米微球,并对其进行结构表征和性能测试。结果表明,合成的磁性纳米粒子粒径约为40nm,荧光强度约为450a.u.,饱和磁化强度为32.2emu/g。这种合成简便的磁性荧光双功能纳米材料有望在靶向治疗、免疫检测、细胞的分离和催化等领域得到广泛应用。  相似文献   

20.
通过微乳液共混沉淀法制备了海藻酸钠(SA)修饰的Fe_3O_4磁性纳米粒子Fe_3O_4-SA,该粒子具有良好的分散性和磁响应性.采用红外、透射电镜、磁滞回线和热失重等对磁性纳米粒子的结构和性能进行表征,同时对该磁性纳米粒子与去离子水的混合液作为驱动液时的正渗透(FO)分离性能进行了测试.结果表明,SA成功包覆在Fe_3O_4粒子表面,粒子的粒径约为20 nm,80 g/L的Fe_3O_4-SA磁性纳米粒子与去离子水的混合液渗透压达到1 270 mOSM/L,以此混合液作为FO过程的驱动液时,渗透通量可以达到2.04 L/(m~2·h),并且该驱动液具有较低的反向溶质通量,当驱动液质量浓度为80 g/L时,反向溶质通量约为0.04 g/(m~2·h),大大低于NaCl和SA的反向溶质通量,这说明该驱动液具有较好的FO分离性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号