首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
Doong R  Chang S 《Analytical chemistry》2000,72(15):3647-3652
The determination of distribution coefficients is important for prediction of the chemical pathways of organic compounds in the environment. Solid-phase microextraction (SPME) is a convenient and effective method to measure the distribution of chemicals in a two-phase system. In the present study, the SPME distribution coefficient (K(spme)) of 16 priority aromatic hydrocarbons (PAHs) was determined with 100-microm poly(dimethylsiloxane) (PDMS) and 85-microm polyacrylate (PA) fibers. The partition coefficients and LeBas molar volumes were used to describe the linearity of the log K(spme) values of PAHs. Also, the validation of the distribution coefficient was examined using different sample volumes. The extraction time was dependent on the types of PAHs, and 20 min to 60 h was needed to reach equilibrium. The determined log K(spme) values ranged from 3.02 to 5.69 and from 3.37 to 5.62 for 100-microm PDMS and 85-microm PA fibers, respectively. Higher K(spme) values of low-ring PAHs were observed using 85-microm PA fiber. Good linear relationships between log K(ow) and log K(spme) for PAHs from naphthalene to benzo[alpha]pyrene and from naphthalene to chrysene for 100-microm PDMS and 85-microm PA fibers, respectively, were obtained. The correlation coefficients were 0.969 and 0.967, respectively. The linear relationship between log K(spme) and the LeBas molar volume was only up to benz[alpha]anthracene for 85-microm PA fiber and up to chrysene for 100-microm PDMS fiber. Moreover, the effect of sample volume can be predicted using the partition coefficient theory and excellent agreement was obtained between the experimental and theoretical absorbed amounts of low-ring PAHs. This result shows that the determined log K(spme) is more accurate than the previous method for estimating analytes with log K(ow) < 6 as well as for predicting the partitioning behaviors between SPME fiber and water.  相似文献   

2.
Absorption-based polymeric solid-phase microextraction (SPME) fibers with poly(dimethylsiloxane) (PDMS) coatings were used to determine the partitioning coefficients of polychlorinated biphenyls (PCBs) between the sorptive fiber coatings and water. Previous models showing very good correlations between octanol-water partitioning coefficients (K(ow)) and absorption-based fiber-water partitioning coefficients (K(dv)) for low-molecular-weight analytes failed to predict K(dv) values for PCBs. In fact, K(dv) values for PCBs were 1-7 orders of magnitude lower than those predicted by K(ow) and actually showed a strong negative correlation between K(ow) and K(dv) for higher molecular weight analytes (MW >~200). K(dv) values obtained using PDMS fibers with 7- and 100-μm coatings also disagree, demonstrating that K(dv) cannot be used to describe the partitioning behavior of PCBs between PDMS and water. However, when PCB partitioning coefficients were calculated on the basis of surface area (K(ds)), the K(ds) values obtained using 7- and 100-μm PDMS fibers agreed reasonably well, demonstrating that surface adsorption is the primary mechanism controlling PCB (and likely other higher molecular weight solutes) partitioning from water to SPME sorbents.  相似文献   

3.
Solid-phase microextraction (SPME) parameters were examined on water contaminated with hydrocarbons including benzene and alkylbenzenes, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs). Absorption equilibration times ranged from several minutes for low molecular weight compounds such as benzene to 5 h for high molecular weight compounds such as benzo[a]pyrene. Under equilibrium conditions, SPME analysis with GC/FID was linear over 3-6 orders of magnitude, with linear correlation coefficients (r(2)) greater than 0.96. Experimentally determined FID detection limits ranged from ~30 ppt (w/w hydrocarbon/sample water) for high molecular weight PAHs (e.g., MW > 202) to ~1 ppb for low molecular weight aromatic hydrocarbons. Experimental distribution constants (K) were different with 100- and 7-μm poly(dimethylsiloxane) fibers, and poor correlations with previously published values suggest that K depends on the fiber coating thickness and the sorbent preparation method. The sensitivity of SPME analysis is not significantly enhanced by larger sample volumes, since increasing the water volume (e.g., from 1 to 100 mL) has little effect on the number of analyte molecules absorbed by the fiber, especially for compounds with K < 500. Water sample storage should utilize silanized glassware, since hydrocarbon losses up to 70% could be attributed to unsilanized glassware walls when samples were stored for 48 h. Hydrocarbon losses at part-per-billion concentrations also occurred with surface waters due to partitioning onto part-per-thousand concentrations of suspended solids. Quantitative determinations of aromatic and aliphatic hydrocarbons (e.g., in gasoline-contaminated water) can be performed using GC/MS with deuterated internal standard or standard addition calibration as long as the target components or standards had unique ions for quantitation or sufficient chromatographic resolution from interferences. SPME analysis gave good quantitative performance with surface waters having high suspended sediment contents, as well as with coal gasification wastewater which contained matrix organics at 10(6)-fold higher concentrations than the target aromatic hydrocarbons. Good agreement was obtained between a 45-min SPME and methylene chloride extraction for the determination of PAH concentrations in creosote-contaminated water, demonstrating that SPME is a useful technique for the rapid determination of hydrocarbons in complex water matrices.  相似文献   

4.
The use of solid-phase microextraction with poly(dimethylsiloxane) (PDMS)-coated glass fibers for the extraction and analysis of hydrophobic organic analytes is increasing. The literature on this topic is characterized by large discrepancies in partition coefficients and an uncertainty of whether highly hydrophobic analytes are retained by absorption into the fiber coating or by adsorption to the fiber surface. We applied a new method, which minimizes the impact of experimental artifacts, to determine PDMS water partition coefficients of 17 hydrophobic analytes including chlorinated benzenes, PCBs, PAHs, and p,p'-DDE. These partition coefficients are several orders of magnitude higher than some reported values. Two observations strongly suggest that the retention of hydrophobic organic substances is governed by partitioning into the PDMS coating. (1) The partition coefficients are proportional with octanol/water partition coefficients. (2) The fluorescence of fluoranthene was observed to be homogeneously distributed within the polymer coating when studied by means of fluorescence microscopy. Implications of these findings for the application of solid-phase microextraction with respect to potential detection limits, with respect to biomimetic extraction, and with respect to measurements in multicompartment systems are discussed.  相似文献   

5.
The properties of a thin sheet of poly(dimethylsiloxane) (PDMS) membrane as an extraction phase were examined and compared to solid-phase microextraction (SPME) PDMS-coated fiber for application to semivolatile analytes in direct and headspace modes. This new PDMS extraction approach showed much higher extraction rates because of the larger surface area to extraction-phase volume ratio of the thin film. Unlike the coated rod formats of SPME using thick coatings, the high extraction rate of the membrane SPME technique allows larger amounts of analytes to be extracted within a short period of time. Therefore, higher extraction efficiency and sensitivity can be achieved without sacrificing analysis time. In direct membrane SPME extraction, a linear relationship was found between the initial rate of extraction and the surface area of the extraction phase. However, for headspace extraction, the rates were somewhat lower because of the resistance to analyte transport at the sample matrix/headspace barrier. It was found that the effect of this barrier could be reduced by increasing either agitation, temperature, or surface area of the sample matrix/headspace interface. A method for the determination of PAHs in spiked lake water samples was developed based on the membrane PDMS extraction coupled with GC/MS. A linearity of 0.9960 and detection limits in the low-ppt level were found. The reproducibility was found to vary from 2.8% to 10.7%.  相似文献   

6.
Hot water extraction with in situ wet oxidation: PAHs removal from soil   总被引:2,自引:0,他引:2  
We are reporting the results of a small-scale batch extraction with and without in situ wet oxidation of soils polluted with polycyclic aromatic hydrocarbons (PAHs) using subcritical water (liquid water at high temperatures and pressures but below the critical point as the removal agent). Two types of soil; one spiked with four PAHs, and an aged sample were used. Experiments were carried out in a 300 ml volume reactor in the batch mode. In each experiment, the reactor was filled with 45-50 g of soil and 200-220 ml of double distilled water. For extraction without oxidation, the reactor was pressurized with nitrogen, while for those with the oxidation, an oxidizing agent (air, oxygen or hydrogen peroxide) was used.The extraction only experiments were carried out at 230, 250 and 270 degrees C for spiked soil samples, and at 250 degrees C for aged soil samples, while all of the combined extraction and oxidation experiments were carried out at 250 degrees C. Removal of PAHs from spiked soil in extraction-only experiments was from 79 to 99+% depending on the molecular weight of the PAH. This was in the range of 99.1% to excess of 99.99% for the combined extraction and oxidation. While 28-100% of extracted PAHs can be found in water phase in case of extraction alone, this reduces to a maximum of 10% if the extraction is combined with oxidation. With aged soil similar or comparable results were obtained. Based on these results, extraction with hot water, if combined with oxidation, would probably reduce the cost of post treatment for the water and can be used as a feasible alternative technique for remediation of contaminated soils and sediments.  相似文献   

7.
Pressurized hot water extraction (PHWE) was directly combined with a LC-GC system for the determination of polyaromatic hydrocarbons (PAHs) in sediment. The sediment sample was first extracted with pressurized hot water, and the analytes were adsorbed into a solid-phase trap. The trap also functioned as a LC column, which removed most of the interfering matrix components. The 780-microL LC fraction containing the analytes was directly transferred to the GC using an on-column interface. The whole PHWE-LC-GC analysis took place in a closed system, and no sample pretreatment was required. The sensitivity of the method was excellent due to the efficient concentration in the LC-GC system. Sensitivity was approximately 800 times better than in traditional systems. In addition, only a small amount of sample (10 mg) was required for the analysis. The PHWE-LC-GC method proved to be linear in the concentration range of 0.01-2 microg/g, the limits of quantification were below 0.01 microg/g for all the analytes, and the relative standard deviations were between 3 and 28%. LC cleanup and the improved sensitivity made detection with FID sufficient for the determination of analytes. The results were comparable to those obtained in an interlaboratory comparison study as well as to the results obtained with off-line SFE-GC-MS.  相似文献   

8.
An integrative sampler that consists of a bar coated with poly(dimethylsiloxane) (PDMS) enclosed in a dialysis membrane bag has been developed combining the advantages of the passive sampling approach with solventless preconcentration of organic solutes from aqueous matrixes and subsequent desorption of the sequestered analytes on-line with a capillary GC/MS system. The performance of the sampler was tested for integrative sampling of hydrophobic persistent organic pollutants including gamma-hexachlorocyclohexane, hexachlorobenzene, 2,2'-bis(4-chlorophenyl)-1,1'-dichloroethylene, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in the laboratory in a continuous-flow system. Linear uptake of all test analytes during exposure periods up to one week has been observed, and concentration proportionality of response of the sampler has been demonstrated. Over the range of controlled laboratory conditions, the magnitude of sampling rate values varied from 47 to 700 microL h(-1) per sampler. The uptake rate of chemicals was dependent on their molecular mass, as well as on the partition coefficient between the PDMS and water. A decrease in sampling rates with decreasing water temperature was observed. The sampling device has the potential to detect low aqueous concentrations (ng to pg L(-1)) of test substances.  相似文献   

9.
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in Qiantang River, the most important drinking water resource in Zhejiang Province, China. A total of 270 water samples, 64 sediment samples and 21 soil samples near riverbank were collected during January 2005-July 2006. The total concentrations of PAHs in water, sediments and soils ranged from 70.3 to 1844.4 ng/L, from 91.3 to 1835.2 ng/g and from 85.2 to 676.2 ng/g, respectively. The concentrations of PAHs in rural areas were lower than those in city zones. The concentrations of PAHs in July were the lowest while those in January were the highest during four seasons. The concentrations of PAHs in 2006 were compared with those in 2003 and 2005. The result showed PAHs pollution in this drinking water resource was increasing with time. The relationship between log K(oc) and log K(ow) of PAHs for field data on sediments and predicted values indicated that Qiantang River was mainly contaminated by petrogenic PAHs. The same result was obtained by the ratios of AN/(AN + Phen) and Flur/(Flur + Pye). Ratios of K(oc) for PAHs on sediments to that on corresponding soils indicated that PAHs in Qiantang River were mainly obtained from soil runoff.  相似文献   

10.
Persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs) are of great concern due to their persistence, bioaccumulation and toxic effects. In this work, 16 PAHs included in the US Environmental Protection Agency's (EPA) priority pollutant list were analyzed using solid-phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS) with a selected ion monitoring (SIM) mode. Reclaimed water and surface water sampling was undertaken in Tianjin, northern China. Total PAH concentrations varied from 1800 to 35,000 ng/L in surface waters (main rivers, tributaries, ditches, etc.) with mean value of 14,000 ng/L and from 227 to 600 ng/L in reclaimed water with mean value of 352 ng/L, respectively. The PAH profiles were dominated by low molecular weight PAHs (two- and three-ring components) in reclaimed water samples and surface water samples. These indicated that PAHs in reclaimed water and surface water might origin from oil or sewage contamination (petrogenic input). To elucidate sources, molecular indices based on indices among phenanthrene versus anthracene and fluoranthene versus pyrene were used to evaluate the possible source (pyrogenic and petrogenic sources, respectively) of PAH contamination in reclaimed water and surface water. The collected data showed that petrogenic input was predominant at almost all the stations investigated. To discriminate pattern differences and similarities among samples, principal component analysis (PCA) was performed using a correlation matrix. PCA revealed the latent relationships among all the surface water stations investigated and confirmed our analytical results. The analysis results of the ratios and PCA in this study showed that the ratios and PCA could be applied to the surface water investigation to some extent.  相似文献   

11.
A comparison of the feasibility of the three operational modes of pressurized hot solvent extraction (PHSE) (namely, static, where a fixed extractant volume is used; dynamic, where the extractant continually flows through the sample; and static-dynamic mode, which consists of a combination of the two previous modes) for the extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental solid samples (such as soil, sediment, trout, and sardine) has been performed. In all cases, a sodium dodecyl sulfate (SDS) aqueous solution was used as leaching agent. The use of a flow injection manifold between the extractor and a molecular fluorescence detector allowed real-time on-line fluorescence monitoring of the PAHs extracted from the samples, thus working as a screening system and providing qualitative and semiquantitative information on the target analytes extracted from both natural and spiked samples. The on-line monitoring option allowed the extraction kinetics to be monitored and the end of the leaching step to be determined independently of the sample matrix, thereby reducing extraction times. Efficiencies close to 100% have been provided by the three modes, which differ in the extraction time required for total removal of the target compounds. The time needed for the dynamic mode was shorter than that for the static mode. However, the establishment of a static extraction step prior to dynamic extraction was the key to shorten the time required for complete extraction. The method has been applied to a certified reference material (CRM 524, BCR, industrial soil/organics) for quality assurance/validation.  相似文献   

12.
Concentrations, fingerprint and daily intake of 16 PAHs in 15 bread samples baked using wood as fuel are examined in this work. Analysis was performed by GC/MS after saponification of the samples and clean up of the extract. The total concentration of the 16 analytes varies from 6 to 230 microg/kg on dry weight (d.w.). The better extraction procedure was estimated by analyzing test-samples and using different extraction methods. Additionally, for every analyzed sample, the extraction yield has been determined by the use of surrogate standards. Extraction yields were never less than 77% and in most cases almost 100%. The profiles of PAHs (percentage) are similar for all the analyzed samples but are different from those reported when other types of fuels are taken in consideration. The daily intake of PAHs was found to range between 1.6 and 68 microg day(-1), while the intake of B[a]P ranges from 0.33 to 8.0 microg day(-1). These results are considerably lower than the slope factor for 14 of the 15 analyzed samples.  相似文献   

13.
Supercritical fluid extraction (SFE) was directly coupled with high-performance liquid chromatography (LC) via the simplest interface--only one six-port injection valve. By using water to eliminate decompressed CO2 gas in the solid-phase octadecylsilica trap, high extraction recovery (> or = 95%) of polynuclear aromatic hydrocarbons (PAHs) from a sand matrix was achieved under optimized conditions. The volume of rinse water had little influence on the recovery, due to the very low solubility of PAHs in water and the sorption properties of the C-18 trap. Different amounts of sand matrix with a fixed mass of analytes have also been tested. No decrease in recovery was found when the matrix (sand) increased from 1 to 10 g. Methanol and acetone were used as a CO2 modifier to enhance the extraction efficiency. Finally, PAHs in naturally contaminated soil were successfully extracted and quantitatively determined by this hyphenated system. Compared to the EPA method (Soxhlet extraction following by GC/MS), on-line SFE-LC gave precise results in a much shorter time.  相似文献   

14.
Lamm LJ  Yang Y 《Analytical chemistry》2003,75(10):2237-2242
In this study, the off-line coupling of subcritical water extraction (SBWE) with subcritical water chromatography (SBWC) was achieved using a sorbent trap and thermal desorption. The sorbent trap was employed to collect the extracted analytes during subcritical water extraction. After the extraction, the trap was connected to the subcritical water chromatography system, and thermal desorption of the trapped analytes was performed before the SBWC run. The thermally desorbed analytes were then introduced into the subcritical water separation column and detected by a UV detector. Anilines and phenols were extracted from sand and analyzed using this off-line coupling technique. Subcritical water extraction of flavones from orange peel followed by subcritical water chromatographic separation was also investigated. The effects of water volume and extraction temperature on flavone recovery were determined. Because a sorbent trap was used to collect the extracted analytes, the sensitivity of this technique was greatly enhanced as compared to that of subcritical water extraction with solvent trapping. Since no organic solvent-water extractions were necessary prior to analysis, this technique eliminated any use of organic solvents in both extraction and chromatography processes.  相似文献   

15.
The town of Shuitou was renowned as the leather capital of China because of its large-scale tanning industry, but the industry's lack of pollution controls has caused severe damage to the local water system. This study determined 15 priority polycyclic aromatic hydrocarbons (PAHs) in water, sediment, soil, and plant samples collected from Aojiang River and its estuary. The total PAHs ranged from 910 to 1520 ng/L in water samples. The total PAH in sediments were moderate to low in comparison with other rivers and estuaries in China, but the relative proportions of PAHs per million people are high when considering the population size associated with each watershed. Ratios of fluoranthene/pyrene and PAHs with low/high molecular weight suggest a petrogenic PAH origin. The PAH composition profile in soil was similar to that in sediment with 4–6 ring PAHs being dominant. The PAHs with 2–3 rings were the dominant species in plant leaves. There were no correlations between PAHs in soils and in plants, suggesting that PAHs accumulate in plant leaves through absorption from the air. The general observation of elevated PAH concentrations in all matrix suggests a possible contribution by the local leather industry on the PAH concentrations in the Aojiang watershed.  相似文献   

16.
Sol-gel capillary microextraction (sol-gel CME) is introduced as a viable solventless extraction technique for the preconcentration of trace analytes. To our knowledge, this is the first report on the use of sol-gel-coated capillaries in analytical microextraction. Sol-gel-coated capillaries were employed for the extraction and preconcentration of a wide variety of polar and nonpolar analytes. Two different types of sol-gel coatings were used for extraction: sol-gel poly(dimethylsiloxane) (PDMS) and sol-gel poly(ethylene glycol) (PEG). An in-house-assembled gravity-fed sample dispensing unit was used to perform the extraction. The analysis of the extracted analytes was performed by gas chromatography (GC). The extracted analytes were transferred to the GC column via thermal desorption. For this, the capillary with the extracted analytes was connected to the inlet end of the GC column using a two-way press-fit fused-silica connector housed inside the GC injection port. Desorption of the analytes from the extraction capillary was performed by rapid temperature programming (at 100 degrees C/min) of the GC injection port. The desorbed analytes were transported down the system by the helium flow and further focused at the inlet end of the GC column maintained at 30 degrees C. Sol-gel PDMS capillaries were used for the extraction of nonpolar and moderately polar compounds (polycyclic aromatic hydrocarbons, aldehydes, ketones), while sol-gel PEG capillaries were used for the extraction of polar compounds (alcohols, phenols, amines). The technique is characterized by excellent reproducibility. For both polar and nonpolar analytes, the run-to-run and capillary-to-capillary RSD values for GC peak areas remained under 6% and 4%, respectively. The technique also demonstrated excellent extraction sensitivity. Parts per quadrillion level detection limits were achieved by coupling sol-gel CME with GC-FID. The use of thicker sol-gel coatings and longer capillary segments of larger diameter (or capillaries with sol-gel monolithic beds) should lead to further enhancement of the extraction sensitivity.  相似文献   

17.
A cap-shaped device was employed for headspace sampling. This sampling device coupled to membrane extraction with a sorbent interface (MESI) is intended to perform on-site and on-line aqueous sample monitoring. A laboratory sampling testwas performed both at the water surface and under water, and it showed some advantages in underwater monitoring. A group of volatile organic compounds (VOCs), varying in PDMS/gas and gas/water distribution constants, benzene, toluene, ethylbenzene, o-xylene, and trichloroethylene (TCE), was used for the sampling study. Magnetic stirring of the sample and circulation of the headspace air with a microfan were used for the enhancement of mass transfer between sample matrix and membrane to obtain higher extraction rate and efficiency. The agitation approaches were investigated individually and compared. The results showed that simultaneous agitation in water and air could greatly improve the extraction efficiency. Good linearity and precision and low detection limits were obtained for water-surface monitoring. The study demonstrated that Cap-MESI is a useful tool for field headspace monitoring of volatile organic compounds.  相似文献   

18.
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) has been investigated in Qiantang River, an important drinking water resource in Yangzi River Delta, China. A total of 218 samples, including 180 water and 38 sediment samples were collected in January, April, July and October, 2005. The concentrations of total PAHs in water ranged from 70.3 to 1844.4ng/L with the mean value of 283.3ng/L, which were predominated by two- and three-ring PAHs. The concentration of total 15 PAHs in sediment ranges from 91.3 to 614.4ng/g dry weight with the mean value of 313.1ng/g dry weight, and three- and four-ring PAHs were dominant species. The ratios of AN/(AN+Phen) and Flur/(Flur+Pye) were calculated to evaluate the possible sources of PAHs. These ratios reflected a pattern of petrogenic input of PAHs in Qiantang River. The contents of PAHs in city zones were much higher than those in rural areas. It may be concluded that the urbanization and industrialization are causing some negative effect on the drinking water resource. As a drinking water resource, there existed certain potential health risks to drinking water consumers and organism in Qiantang River Basin.  相似文献   

19.
N Li  H K Lee 《Analytical chemistry》2001,73(21):5201-5206
A tandem-cartridge system was established for studying colloid formation and physical state distribution of trace polycycic aromatic hydrocarbons (PAHs) in water. The effectiveness of the method for measuring the trace PAH colloids was demonstrated. With aqueous samples prepared by adding the PAH solutes with a small amount of organic solvent carrier, the potential of colloid formation increased with the hydrophobicity and concentration of the solute, but the incipient concentration for the colloid formation may be far lower than the aqueous solubility of the solute. After formation in water, the colloids showed remarkable stability at room temperature, and the stability was greatly reduced by elevated temperature and the presence of a small amount of inorganic electrolytes. The possible mechanism of destabilization of the colloids was discussed, and the mechanism might be of utility in providing insights into the physical state distribution of the solutes in various water samples. However, further effort to investigate the mechanism through fluorescence spectrophotometry was unsuccessful. The significance of the colloid formation in methods of preparation of aqueous samples and for measuring aqueous solubilities of PAHs and other hydrophobic compounds was illustrated. The results of this work demonstrate that it is undesirable to prepare aqueous solutions of PAHs or similarly hydrophobic compounds by vigorous mixing or the use of cosolvents, methods that are widely used in many studies for which aqueous solutions of such analytes are required.  相似文献   

20.
Benner BA 《Analytical chemistry》1998,70(21):4594-4601
A summary of the supercritical fluid extraction (SFE) of polycyclic aromatic hydrocarbons (PAHs) from four natural matrix Standard Reference Materials (SRMs) is presented. The work involved the investigation of the effects of extraction fluid [carbon dioxide (CO(2)), chlorodifluoromethane (R22), and 1,1,1,2-tetrafluoroethane (HFC134a)], fluid modifier (dichloromethane and aniline), temperature (60, 150, and 200 °C) and added water on the SFE recoveries of PAHs compared to certified results from Soxhlet extractions. For SRM 1649a (Urban Dust/Organics), R22 yielded excellent recoveries (>90% of certified concentrations) of all PAHs measured, while results for the same SRM using HFC134a as the fluid were typically <80% of the certified concentrations for most of the PAHs measured. For SRM 1941a and 1944, both aquatic sediments with similar physical and chemical compositions, extractions of the wet materials with dichloromethane-modified CO(2) (10%, v/v) yielded quantitative recoveries of all PAHs for SRM 1944 but an obvious trend of lower recoveries for higher molecular weight PAHs (≥228 amu) for SRM 1941a. Results of SFEs of SRM 1650 (Diesel Particulate Matter) showed that this material is the most refractory of the SRMs investigated in this study, with recoveries of indeno[1,2,3-cd]pyrene and benzo[ghi]perylene at <20% of the Soxhlet results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号