首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The interactive effects of fly ash and CNI in corrosion of reinforced concrete were investigated. A 34 full factorial design was developed considering water to cement ratio, fly ash percent, CNI and cracked condition as factors. The response factors were the weight loss calculated from Linear Polarization Resistance measurements and the pit depth of the steel bars embedded in concrete. Small-scale concrete slabs containing steel reinforcement with a cover depth of 20 mm were cast for this purpose. The slabs were subjected to a simulated marine environment with two cycles of wetting and drying per day during one year; after the exposure, the slabs were broken, the bars were cleaned and the pith depth measured by using SEM. Under the studied conditions, it was found that CNI alone does not provide corrosion protection of the steel reinforcement even for uncracked silica fume concrete in a 0.45 w/c ratio; however, the combination of CNI and fly ash can be useful to overcome this problem. The results indicate that low w/c ratio concrete in its crack state creates conditions suitable for the development of pitting corrosion.  相似文献   

2.
In this study the influence of crack width, cover depth and concrete quality on corrosion of steel in high performance concrete was investigated. Three mixtures, one control and two more containing corrosion inhibiting admixtures, Calcium Nitrite and Disodium Tetrapropenyl Succinate, in combination with 20% fly ash replacement with respect to the cement weight were prepared. Specimens were concrete cylinders measuring 100 mm in diameter and 65 and 105 mm in length, with a 16-mm steel bar centrally placed at two concrete covers of 25 and 45 mm. Before being exposed to a simulated marine environment, the specimens were pre-cracked under a controlled splitting test with crack widths ranging from 90 to 330 μm formed perpendicularly to the reinforcing bars. During a 16-month exposure, the corrosion risk of the reinforcing bars was evaluated by half-cell corrosion potentials and the corrosion rate by linear polarization method. Also, the total integrated corrosion current was estimated. Results show that, albeit to different degrees, cracking was found to be an influencing factor in promoting corrosion of the steel in concrete with either 25 mm or 45 mm concrete cover; nevertheless, the effectiveness of the concrete cover depended greatly on the crack thickness. Results also revealed that corrosion inhibitors and fly ash were effective in delaying corrosion even in cracked concrete.  相似文献   

3.
The good performance of reinforced concrete depends on the appropriate transfer of forces between reinforcing rebars and concrete, which relies on the bond interaction between the two materials. At an uncracked section, both materials work together by means of the bond forces; however, if the tensile strength of the concrete is reached at a certain part of the structure, a crack will appear and the steel will be the only active element at the cracked section. At increasing loads, the crack will continue opening and large crack openings may lead to a failure of the rebar and to the collapse of the whole structure. A new idea to positively influence the cracking behaviour has emerged, which is based on the combination of smooth and rib zones within the same reinforcing rebar. Furthermore, use of stainless steel flat reinforcement has been considered as an option to optimize the reinforcing of shallow slabs. This paper presents bond tests performed on carbon and stainless steel flat reinforcements embedded in concrete and with different alternate rib configurations. Test results are presented in terms of bond strength and force transfer stiffness, as well as in terms of bond stress–slip relationship. Results show no differences between the bond capacity of carbon and stainless steel rebars if other parameters are kept constant. The use of an alternate surface configuration combining smooth and ribbed zones within the bond length, does affect the bond capacity of the rebar, and the position of the smooth zone within the bond length plays an important role.  相似文献   

4.
Permissible crack widths in steel fibre reinforced marine concrete   总被引:1,自引:0,他引:1  
The paper presents some results from a continuing study of the marine durability of steel fibre reinforced concrete. The overall aim of the investigation is to develop the material for marine applications. The results reported here pertain to pre-cracked specimens of steel fibre reinforced concrete which were exposed to wet-dry cycles of marine spray in the laboratory simulating tidal zone conditions of exposure. Two types of concrete mixes were used in the investigation—one with standard concrete constituents and OPC and the second replacing about 26% of cement with pfa. The cement content of the mixes was 590 and 435 kg m−3, respectively. Fibre reinforcement was provided by means of low carbon steel fibres and melt extract steel fibres at a v f ℓ/d ratio of 100 and 147. Prism specimens were manufactured and these were precracked to induce cracks of width ranging between 0.03 and 1.73 mm. After cracking, both sealed and unsealed specimens were exposed to laboratory marine spray cycles using sea water. Some control specimens were cured in the laboratory air throughout. Tests were carried out after 650 marine cycles (450 days) and 1450 marine cycles (900 days). Based on data on flexural strength, energy absorption capacity, stiffness and state of corrosion of the fibres, recommendations are made regarding suitable permissible crack widths for the design of steel fibre reinforced concrete for marine applications. The results indicate that a permissible crack width of 0.2 mm is satisfactory for concrete reinforced with melt extract fibres. A smaller value is recommended for concrete reinforced with low carbon steel fibres. Complete healing of open cracks of small widths is observed under exposure to marine cycles.  相似文献   

5.
This is a report on tests carried out on concrete slabs reinforced with bonded steel sheet, where flexural stiffness and ultimate capacity were improved versus conventional r. c. slabs. In the case of sheet metal, which has biaxial strength properties, the steel is far better utilized than in that of the uniaxial reinforcing bars, hence the slab structure is more economical. Fire- and corrosion protection is provided by a 10 mm coating of fire-shield plaster (or some other insulating agent).  相似文献   

6.
This paper reports the results of a research project comparing the effect of surface crack width and degree of corrosion on the bond strength of confined and unconfined deformed 12 and 16 mm mild steel reinforcing bars. The corrosion was induced by chloride contamination of the concrete and an applied DC current. The principal parameters investigated were confinement of the reinforcement, the cover depth, bar diameter, degree of corrosion and the surface crack width. The results indicated that potential relationship between the crack width and the bond strength. The results also showed an increase in bond strength at the point where initial surface cracking was observed for bars with confining stirrups. No such increase was observed with unconfined specimens.  相似文献   

7.
This paper advocates for the adoption of performance-based limiting crack widths with respect to steel corrosion in reinforced concrete structures. The authors argue that, from both durability and sustainability viewpoints, the practice of adopting a universal limiting crack width for a wide range of in-service exposure conditions and concrete cover conditions and quality is not valid. As new performance-based concrete design codes are being developed and/or improved, the influence of cover cracking on steel corrosion needs to be incorporated in these codes. An experimental set-up was designed to investigate the influence of cover cracking, cover depth and concrete quality on chloride-induced corrosion. Beam specimens (120?×?130?×?375?mm) were cast using five concretes made using two w/b ratios (0.40 and 0.55) and three binders (100?% CEM I 42.5?N (PC), 50/50 PC/GGBS and 70/30 PC/FA). Other variables in the experiments included cover depth (20 and 40?mm), crack width (0, 0.4 and 0.7?mm). A total of 105 beam specimens were cast and exposed to cyclic 3-days wetting (with 5?% NaCl solution) and 4-days air-drying in the laboratory (23?°C, 50?% relative humidity). Corrosion rate was monitored bi-weekly in the specimens. The results relevant to this paper are presented and discussed. For a given concrete quality and cover depth, corrosion rate increased with increasing crack width. If crack width and cover depth are kept constant, corrosion rate increases with decreasing concrete quality, and vice versa. A model framework that can be used to objectively select cover depth, concrete quality and crack width is proposed. Such a model can be improved into, for example, a nomograph and used in the design process for RC structures prone to corrosion. Performance-based crack width limits should be adopted in the design of RC structures prone to steel corrosion. These crack width limits should be dependent on a complex interaction of, inter alia, concrete quality, cover depth, crack characteristics and prevailing exposure conditions. This study showed the inter-relationship between crack width, cover depth and concrete quality in affecting chloride-induced corrosion rate. Accurate corrosion rate prediction models incorporating the influence of cover cracking on corrosion are a pre-requisite to implementing the influence of cover cracking in future concrete design codes.  相似文献   

8.
用电阻探针法研究水环境中钢筋混凝土的腐蚀行为   总被引:2,自引:0,他引:2  
混凝土中钢筋腐蚀十分严重,为了对混凝土内钢筋腐蚀进行在线监测,设计了箔栅电阻探针试样及钢筋腐蚀监测仪.介绍了电阻探针监测系统的原理及组成,采用电阻探针法测量了10 mm和20 mm两种混凝土保护层厚度的试样浸泡在青岛海水全浸区、潮差区和长江港淡水环境以及实验室内3%氯化钠溶液中的钢丝电阻腐蚀情况,由电阻值变化可计算出钢丝腐蚀率.试验结果表明,电阻探针法能实时地监测混凝土中钢筋腐蚀的行为.  相似文献   

9.
10.
为了研究高强钢丝绳网片-聚合物砂浆对钢筋混凝土(RC)板的抗爆加固效果,对5块加固RC板和1块未加固RC板进行了野外现场爆炸试验,研究了砂浆强度、钢丝绳间距、钢丝绳预应力和界面增设销钉等因素对试件的破坏形态、裂缝分布及发展、跨中位移、钢筋应变等影响规律,并对爆炸试验后的试件进行了剩余承载力试验和爆炸损伤评估。研究表明:高强钢丝绳网片-聚合物砂浆加固能显著提高RC板的抗爆性能,相比于未加固板,加固板的裂缝宽度,板底跨中的峰值位移、残余位移和钢筋应变均大幅减小;加固后,构件剩余承载力大幅增加,其损伤程度大为降低。  相似文献   

11.
该文利用超高韧性水泥基复合材料(UFHTCC)所具备的较好的裂缝控制能力、较高的耗能能力、耐腐蚀性以及与混凝土之间良好的粘结性能,将其浇注在混凝土三点弯曲梁的受拉面,对加固后的混凝土三点弯曲梁的断裂过程进行了研究.首先由界面变形一致的假定,忽略了UHTCC未开裂区域的弹性变形,提出了UHTCC总裂缝宽度Wu的确定方法,...  相似文献   

12.
Cracks in reinforced concrete are unavoidable. Durability is of increasing concern in the concrete industry, and it is significantly affected by the presence of cracks. The corrosion of reinforcing steel due to chloride ions in deicing salts or sea-water is a major cause of premature deterioration of reinforced concrete structures. Although, it is generally recognized that cracks accelerate the ingress of chlorides in concrete, a lack of consensus on this subject does not yet allow reliable quantification of their effects. The present work studies the relationship between crack widths and chloride diffusivity. Flexural load was introduced to generate cracks of width ranging between 29 and 390 μm. As crack width was increased, the effective diffusion coefficient was also increased, thus reducing the initiation period of corrosion process. For cracks with widths less than 135 μm, the effect of crack widths on the effective diffusion coefficient of mortar was found to be marginal, whereas for crack widths higher than 135 μm the effective diffusion coefficient increased rapidly. Therefore, the effect of crack width on chloride penetration was more pronounced when the crack width is higher than 135 μm. Results also indicate that the relation between the effective diffusion coefficient and crack width was found to be power function. In addition, a significant amount of self-healing was observed within the cracks with width below 50 μm subjected to NaCl solution exposure. The present research may provide insight into developing design criteria for a durable concrete and in predicting service life of a concrete structures.  相似文献   

13.
To clarify the corrosion mechanism of steel induced by transverse crack, a study on the influence of crack widths and epoxy coating on corrosion of steel bars in cracked concrete is presented here. Microcell and macrocell corrosions of bars were investigated on single crack specimens with crack widths of 0.08, 0.26, 0.38 and 0.94 mm. The entire study was carried out in an artificially created chloride ion-induced corrosion environment. The results show that the steel in cracks was activated once the transverse crack occurred on concrete element, and the macrocell corrosion must co-exist with microcell corrosion of reinforcements in test specimens with transverse crack. The macrocell current of steel elements were separated from the crack width, and the wider the transverse crack is, the higher corroded area and the greater microcell current of the rebar is. Oxygen and water go into concrete through crack instead of through concrete cover. The epoxy coating cannot prevent the occurrence and propagation of crack, so it was not effective to prevent corrosion of steel bars in cracked concrete.  相似文献   

14.
Prediction of time to corrosion cracking is a key element in evaluating the service life of corroded reinforced concrete (RC) structures. This paper presents a mathematical model that predicts the time from corrosion initiation to corrosion cracking. In the present model a relationship between the steel mass loss and the internal radial pressure caused by the expansion of corrosion products is developed. The concrete around a corroding steel reinforcing bar is modeled as a thick-walled cylinder with a wall thickness equal to the thinnest concrete cover. The concrete ring is assumed to crack when the tensile stresses in the circumferential direction at every part of the ring have reached the tensile strength of concrete. The internal radial pressure at cracking is then determined and related to the steel mass loss. Faraday’s law is then utilized to predict the time from corrosion initiation to corrosion cracking. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel reinforcing bar. The accuracy of the model is demonstrated by comparing the model’s predictions with experimental data published in the literature.  相似文献   

15.
In the 2001 completely revised version of DIN 1045‐1 for the first time an explicit proof against fatigue, more a fatigue analysis, have been published. A limit on the fatigue strength at two million cycles, as it was formerly common in civil engineering, is no longer in use. The influence of corrosion on the fatigue behaviour has been investigated insufficiently. It is thus not satisfyingly clarified. To fill this gap of knowledge, a research program was launched, in which fatigue tests at steel samples with a diameter of 16 mm were performed under going corrosion. The fatigue behaviour of the reinforcing steel was determined for four different corrosive media. The aim of the investiagtions was to show that the SN lines, which are the result of the fatigue tests, have exposure caused very different patterns. On the other hand it is examined, whether crack initiation and crack growth of the steel specimen can be recorded separately from each other. Therefore, different testing methods for crack detection were used. They differ especially with respect to their methodology. The article briefly describes the use of the testing methods for crack detection, explains the fatigue tests with the different corrosive liquids and discusses the test results.  相似文献   

16.
为了研究玻璃纤维网格布在混凝土板中的双向受力性能及钢纤维和纤维网格布混杂使用的增强效果,进行了耐碱试验和双向板受弯试验。探究了钢纤维和玻璃纤维网格布混杂替代传统钢筋网的可行性。结果表明,与中碱玻璃纤维相比,耐碱玻璃纤维的耐腐蚀性能更优越;掺入耐碱玻璃纤维网格布后,混凝土板的极限承载力提高了59%;钢纤维和玻璃纤维网格布的混杂使用表现出较好的正混杂效应,混凝土板的极限承载力和弯曲韧性明显提高,板的破坏形态由脆性破坏转变为延性破坏;可考虑用30 kg/m3钢纤维掺量的混杂钢纤维和耐碱玻璃纤维网格布增强混凝土板代替配筋率为0.2%的钢筋混凝土板。   相似文献   

17.
M. Ohtsu  K. Mori  Y. Kawasaki 《Strain》2011,47(Z2):179-186
Abstract: Concrete structures could suffer from the corrosion of reinforcing steel bars (rebars) because of the penetration of chloride ions. For crack detection and damage evaluation in concrete, acoustic emission (AE) techniques have been extensively applied to concrete and concrete structures. In the corrosion process of reinforced concrete, it is demonstrated that continuous AE monitoring is available to identify the onset of corrosion and the nucleation of concrete cracking because of the expansion of corrosion products. At the latter stage, the expansion of corrosion products generates corrosion‐induced cracks in concrete. The generating mechanisms of these cracks are studied in accelerated corrosion tests of reinforced concrete beams. Kinematics of microcracks are identified by SiGMA (Simplified Green’s functions for Moment tensor Analysis) analysis of AE. It is demonstrated that AE activity at the onset of corrosion and at the nucleation of corrosion‐induced cracks is in remarkable agreement with the phenomenological model of the corrosion process in steel. Then, mechanisms of corrosion‐induced cracks are visually and quantitatively investigated by the SiGMA analysis.  相似文献   

18.
The ingress of chlorides in reinforced concrete leads to the onset of steel reinforcement corrosion and eventually compromises a structure’s integrity. To extend its service life and improve safety, it is crucial to develop sound repair strategies for our nation’s infrastructure. In this paper, results are presented for numerical simulations to study the effectiveness of fillers for repair of cracks in concrete, so as to delay the onset of corrosion in reinforcing steel. Concretes without cracks and with either a 50 μm or 500 μm wide crack located directly above the steel reinforcement are simulated, with the addition of silica fume, a corrosion inhibitor, or epoxy-coated reinforcement being considered as additional scenarios. The effectiveness of the crack filler depends not only on its inherent diffusivity with respect to chloride ions, but also on its ability to penetrate and fill the damaged zone or interface between the open crack region and the bulk concrete. Additional simulations indicate that using continuum models instead of models that include details of the rebar placement can lead to underestimating the chloride concentration and overestimating the service life. Experiments are needed to study the ingress of chlorides in damaged (interfacial) regions adjacent to the crack or at the reinforcement surface, as the local transport properties of these regions can significantly influence service life predictions.  相似文献   

19.
The experimental investigation on plastic shrinkage and plastic settlement for different self-consolidating concrete (SCC) mixtures as repairing materials is presented. The concrete mixtures were placed on the surface of the concrete substrate slabs at different restraint degrees. Four different types of repairing materials such as plain SCC, SCC with silica fume (SF), SCC with latex and SF, and SCC with latex, SF and fiber were evaluated. The slabs included both reinforcement and without reinforcing bars. The tests involved measurement of concrete bleeding and evaporation rates, steel bar strains and crack characteristics. The results indicated that bleeding rate is not the only controlling factor, but restraint condition, configuration of steel bars and the concrete strain capacity are also affect plastic shrinkage and settlement behaviors significantly. Latex and fiber were found to be effective in reduction of cracks and concrete strains. Cracks did not develop on the surface of concrete containing latex and fiber. The results showed that if a slab is reinforced by one single bar (in each direction of the slab), at relatively large diameter as used in this study, it would not improve the plastic shrinkage behavior, although it causes plastic settlement cracking.  相似文献   

20.
This experimental program investigates the possibility of using Carbon-Fiber-Reinforced Polymer (CFRP) rods to repair RC beams damaged by steel corrosion. The 6-mm-diameter carbon-epoxy pultruded FRP rods were implemented in undamaged areas of the concrete cover by using the Near Surface Mounted reinforcement (NSM) technique. The corroded beam tested was stored in a chloride environment under service loading for 23 years, which was representative of real structural conditions. The corroded beam showed longitudinal corrosion cracks more than 3 mm in width along the tension reinforcing bars. The repaired corroded beam was tested in three-point flexure up to failure. Then, concrete was removed around the reinforcing bars in order to measure the real local steel cross-section distribution. The maximum reduction in steel cross-section measured in the tension area was about 36% and was located at mid-span. In spite of this heavy corrosion, the bearing capacity measured on the repaired beam was equal to that of the uncorroded control beam. In our experimental conditions, the NSM technique was applicable for repairing corroded concrete structural members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号