共查询到10条相似文献,搜索用时 62 毫秒
1.
The transverse damage initiation and extension of a unidirectional laminated composite under transverse tensile/compressive loading are evaluated by means of Representative Volume Element (RVE) presented in this paper based on an advanced homogenization model called finite-volume direct averaging micromechanics (FVDAM) theory. Fiber, fiber-matrix interface and matrix phases are considered within the RVE in determining fiber-matrix interface debonding and matrix cracking. The simulated fracture patterns are shown to be in good agreement with experimental observations. 相似文献
2.
This paper discusses damage detection in a holed CFRP laminate under static and cyclic loading using an embedded fiber Bragg grating (FBG) sensor. In order to detect the damage extension in the laminate, the change in the spectrum shape was measured using an embedded FBG sensor and was compared with that obtained by numerical simulation. The shape of the reflection spectrum did not change during the cyclic load test; however, it did change with increased strain in the static load test, due to damage around the hole. To clarify this difference, the polished surface of the cross section of the specimen was analyzed. Debonding was observed between the optical fiber and matrix during the cyclic load test. These results lead us to conclude that fatigue damage around a hole in a composite laminate may not be detected with an FBG sensor due to the debondings. 相似文献
3.
F. Sket R. Seltzer J.M. Molina-Aldareguía C. Gonzalez J. LLorca 《Composites Science and Technology》2012
The onset and evolution of the damage in three dimensions was studied by X-ray computed micro-tomography (XCT) in a notched glass fiber/epoxy cross-ply laminate subjected to three-point bending. It was found that damage began by formation of intraply cracks in the 90° plies followed by intraply cracking the 0° plies. Fiber fracture in front of the notch tip occurred at 65% of the maximum load and finally fiber kinking and interply delamination took place under the loading point. Finite element (FE) simulations were carried out to understand crack initiation and the redistribution of stresses upon crack propagation. The crack area corresponding to each damage mechanism was quantified from the XCT images, and this information was used to determine the effective fracture resistance curve of the cross-ply laminate. 相似文献
4.
5.
Degradations initiated near the edges of a laminate can have a significant effect on its state of degradation, even at the core. Indeed, results from the literature show that laminates which have the same stress state at the core can have completely different states of degradation, even far away from the edges. The paper discusses the influence of the edge effect on damage initiation and propagation for a specific example. A computational micromechanical approach to the degradation of laminated composites was developed recently at LMT-Cachan. This is a hybrid approach in which, depending on the scale, the mechanisms are described using continuous damage mechanics or finite fracture mechanics. Initially developed for static loading, this technique is being extended to fatigue and environmental effects. The aim of this paper is to illustrate the capability of such an approach to take into account major observations during cyclic loading in an oxidizing atmosphere, even when edge effects are significant. 相似文献
6.
Fatigue life evaluation for carbon/epoxy laminate composites under constant and variable block loading 总被引:1,自引:0,他引:1
This paper presents the results of current research on the fatigue life prediction of carbon/epoxy laminate composites involving twelve balanced woven bidirectional layers of carbon fibres and epoxy resin manufactured by a vacuum moulding method. The plates were produced with 3 mm thickness and 0.66 fibre weight fraction. The dog bone shape specimens were cut from these plates with the load line aligned with one of the fibre directions. The fatigue tests were performed using load control with a frequency of 10 Hz and at room temperature. The fatigue behaviour was studied for different stress ratios and for variable amplitude block loadings. The damage process was monitored in terms of the stiffness loss. The fatigue life of specimens submitted to block loading tests was modelled using Palmgren–Miner’s law and taking in to account the stress ratio effect. The estimated and experimental fatigue lives were compared and good agreement was observed. 相似文献
7.
A new, partially discontinuous architecture is proposed to improve the mechanical performance of pseudo-ductile, unidirectional (UD) interlayer carbon/glass hybrid composites. The concept was successfully demonstrated in different laminates with high strength and high modulus carbon and S-glass epoxy UD prepregs. The novel hybrid architecture provided pseudo-ductile tensile stress–strain responses with a linear initial part followed by a wide plateau and a second linear part, all connected by smooth transitions. The best hybrid configuration showed 60% improvement in modulus compared to pure glass, 860 MPa plateau stress and 2% pseudo-ductile strain. The initial modulus, the plateau stress and the overall tensile stress–strain response of each specimen configuration were predicted accurately. 相似文献
8.
9.
Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes 总被引:1,自引:0,他引:1
Behnam Ashrafi Jingwen GuanVahid Mirjalili Yunfa ZhangLi Chun Pascal HubertBenoit Simard Christopher T. KingstonOrson Bourne Andrew Johnston 《Composites Science and Technology》2011,71(13):1569-1578
Carbon nanotubes (CNT) in their various forms have great potential for use in the development of multifunctional multiscale laminated composites due to their unique geometry and properties. Recent advancements in the development of CNT hierarchical composites have mostly focused on multi-walled carbon nanotubes (MWCNT). In this work, single-walled carbon nanotubes (SWCNT) were used to develop nano-modified carbon fiber/epoxy laminates. A functionalization technique based on reduced SWCNT was employed to improve dispersion and epoxy resin-nanotube interaction. A commercial prepregging unit was then used to impregnate unidirectional carbon fiber tape with a modified epoxy system containing 0.1 wt% functionalized SWCNT. Impact and compression-after-impact (CAI) tests, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness tests were performed on laminates with and without SWCNT. It was found that incorporation of 0.1 wt% of SWCNT resulted in a 5% reduction of the area of impact damage, a 3.5% increase in CAI strength, a 13% increase in Mode I fracture toughness, and 28% increase in Mode II interlaminar fracture toughness. A comparison between the results of this work and literature results on MWCNT-modified laminated composites suggests that SWCNT, at similar loadings, are more effective in enhancing the mechanical performance of traditional laminated composites. 相似文献
10.
Laurent Crouzeix Jean Noël Pri Francis Collombet Bernard Douchin 《Composites Part A》2009,40(11):1732-1740
In this paper, it is proposed to apply the equilibrium gap method to orthotropic composite materials to retrieve damage laws from measured displacement fields. A finite difference implementation method is first proposed. A linear system is formed, for which the unknowns are piecewise constant orthotropic rigidities, while the measured displacements are input (known) data. In this example, a cruciform specimen is considered for biaxial test. It is shown that, by referring to FE computed displacement fields a prescribed contrast map can be identified. Corrupted artificial displacement fields obtained through non-linear simulations are also used. When considering shear damage, a procedure using estimated contrast maps to identify a damage law is validated. An experimental biaxial test on a 2.5 C/C composite is finally analysed following the proposed approach. For each unloading step, a contrast map for all moduli is obtained from full-field measurements. By assuming that the shear moduli contrasts result from a damage mechanism, one subsequently obtains damage maps, and therefore, a growth law. The results are first validated by comparing measured and FE reconstructed displacement fields, and by comparing the identified damage fields with post-processed ones. 相似文献