首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The temperature dependence of surface tension and density for Fe–Cr–Mo (AISI 4142), Fe–Cr–Ni (AISI 304), and Fe–Cr–Mn–Ni TRIP/TWIP high-manganese (16 wt% Cr, 7 wt% Mn, and 3–9 wt% Ni) liquid alloys are investigated using the conventional maximum bubble pressure (MBP) and sessile drop (SD) methods. In addition, the surface tension of liquid steel is measured using the oscillating droplet method on electromagnetically levitated (EML) liquid droplets at the German Aerospace Centre (DLR, Cologne). The data of thermophysical properties for Fe–Cr–Mn–Ni is of major importance for modeling of infiltration and gas atomization processes in the prototyping of a “TRIP-Matrix-Composite.” The surface tension of TRIP/TWIP steel increased with an increase in temperature in MBP as well as in SD measurement. The manganese evaporation with the conventional measurement methods is not significantly high within the experiments (?Mn < 0.5 %). The temperature coefficient of surface tension (dσ/dT) is positive for liquid steel samples, which can be explained by the concentration of surface active elements. A slight influence of nickel on the surface tension of Fe–Cr–Mn–Ni steel was experimentally observed where σ is decreased with increasing nickel content. EML measurement of high-manganese steel, however, is limited to the undercooling state of the liquid steel. The manganese evaporation strongly increased in excess of the liquidus temperature in levitation measurements and a mass loss of droplet of 5 % was observed.  相似文献   

2.
The transition of solidified phases in Fe–Cr–Ni and Fe–Ni alloys was investigated from low to high growth rate ranges using a Bridgman type furnace, laser resolidification and casting into a substrate from superheated or undercooled melt. The ferrite–austenite regular eutectic growth, which is difficult to find in typical production conditions of stainless steels, was confirmed under low growth rate conditions. The transition velocity between eutectic and ferrite cell growth had a good agreement predicted by the phase selection criterion. Which of either ferrite or austenite is easier to form in the high growth range was discussed from the point of nucleation and growth. Metastable austenite formation in stable primary ferrite composition was mainly a result of growth competition between ferrite and austenite. For a binary Fe–Ni system, a planar metastable austenite in the steady state, simultaneous growth such as eutectic and banded growth between ferrite and austenite in an initial transient region are confirmed.  相似文献   

3.
Abstract

Model Fe–25 w/o (weight percent) Cr and Fe–25 Cr–Ni alloys containing 2.5, 5, 10 and 25w/o nickel were exposed to a CO–26H2–6H2O (vol. pct) mixture at 680°C under thermal cycling conditions. The supersaturated carbon activity was calculated to be 2.9 (referred to graphite) and M3C was predicted to form on Fe–25Cr and Fe–25 Cr–2.5 Ni, but not on higher nickel content alloys. Metal dusting occurred on all alloys, accompanied by internal carburisation. Transmission electron microscopy of the dusting deposit showed that much of the carbon consisted of hollow graphite nanotubes. Small, metal-rich particles were found at the carbon filament tips. These were identified as single crystal Fe3C in the case of Fe–25 Cr, and M3C, containing low levels of nickel, in the case of Fe–25 Cr–2.5 Ni and Fe–25 Cr–5 Ni. In contrast, the particles found at the filament tips on the higher nickel, two phase, alloys were both M3C and austenitic Fe–Ni. Strong orientation relationships were determined between the graphite and cementite particles, however, no consistent and clear crystallographic relationship was deduced between the graphite and austenite particles. It is concluded that carbon deposition from the gas is catalysed by both Fe3C and austenite. Subsequent carbon nanotube growth reflects the orientation relationship between Fe3C and the graphite.  相似文献   

4.
The density and viscosity of ternary Cr–Fe–Ni liquid alloys have been investigated over a wide temperature range. The density was measured using electromagnetic levitation as a container-less technique, while viscosity was measured by means of a high-temperature oscillating cup viscometer. Although, the concentration dependence of density shows the influence of the second order (binary) interaction parameter in excess volume, the influence of a third order (ternary) interaction parameter in excess volume can be neglected. The temperature dependences of the viscosities are well described by the Arrhenius law. The viscosity increases monotonically as Fe or Cr concentration increases. For constant temperature, the viscosity as a function of iron molar faction can be described by a thermodynamic model using the enthalpy of mixing as input parameter.  相似文献   

5.
The first results of manufacturing and investigations of a new type of nanocomposite protective coatings are presented. They were manufactured using a combination of two technologies: plasma-detonation coating deposition with the help of plasma jets and thin coating vacuum-arc deposition. We investigated structure, morphology, physical and mechanical properties of the coatings of 80–90 μm thickness, as well as defined the hardness, elastic Young modulus and their corrosion resistance in different media. Grain dimensions of the nanocomposite coatings on Ti–N–Cr base varied from 2.8 to 4 nm. The following phases and compounds formed as a result of plasma interaction with the thick coating surface were found in the coatings: Ti–N–Cr (200), (220), γ-Ni3–Fe, a hexagonal Cr2–Ti, Fe3–Ni, (Fe, Ni)N and the following Ti–Ni compounds: Ti2Ni, Ni3Ti, Ni4Ti, etc. We also found that the nanocomposite coating microhardness increased to H = 31.6 ± 1.1 GPa. The Young elastic modulus was determined to be E = 319 ± 27 GPa – it was derived from the loading–unloading curves. The protective coating demonstrated the increased corrosion resistance in acidic and alkaline media in comparison with that of the stainless steel substrate.  相似文献   

6.
7.
Abstract

Nanocrystalline Fe–Ni–Cr–Al alloy coatings with ~4 wt-%Al were produced using the unbalanced magnetron sputter deposition technique with a composite 310S stainless steel target embedded with aluminium plugs. The oxidation behaviour of the coatings was studied, during which complete external α-Al2O3 scales were formed. During isothermal oxidation tests at 950, 1000, and 1050°C, the oxidation kinetics followed an essentially parabolic rate law, and the oxidation constants were measured to be 2·06 × 10-3, 4·23 × 10-3, and 1·14 × 10-2 mg2 cm-4 h-1 respectively. During a cyclic oxidation test at 1000°C the α-Al2O3 scale showed good scale spallation resistance. The surface hardness of the coatings was measured with a Knoop indentor before and after oxidation. After oxidation, the coating surface hardness was still significantly higher than that of the uncoated specimen, demonstrating the potential this coating has in the improvement of high temperature erosion resistance.  相似文献   

8.
Abstract

The development of increased strength in Cu–Ni–Cr alloys, compared with binary Cu–Ni alloys, is dependent upon heat treatment. These alloys have compositions which permit them to be solution treated at elevated temperature and then aged at a lower temperature, in a two phase field, to produce hardening. Decomposition into two phases may occur by nucleation and growth or by a spinodal reaction, depending on alloy composition and heat treatment temperature. As part of a more extensive study of ternary Cu–Ni–Cr alloys, the decomposition of Cu–30Ni–5Cr and Cu–45Ni–15Cr (wt-%) has been studied in the spinodal range. The evolution of microstructure has been determined together with the coarsening kinetics for the modulated spinodal decomposition products. Specimens rapid quenched from 1050°C, were aged in the temperature range 300–800°C. The progress of spinodal decomposition was followed via hardness measurements, X-ray diffraction, and scanning and transmission electron microscopy. Modulation wavelengths were measured from both X-ray diffraction patterns and electron micrographs. It was found that during the early stages of aging the modulation wavelength remained constant while the hardness increased continuously. After a certain period of aging, the hardness remained constant at its peak value, while the modulation wavelength increased continuously. The results are consistent with current theories of spinodal decomposition and hardening.

MST/1733  相似文献   

9.
Abstract

Three iron based shape memory alloys were studied and Fe–6Si–14Mn–9Cr–5Ni alloy showed the best shape memory effect. By thermomechanical training, the shape memory effect was improved and an absolute recovery strain of 6·2% was obtained. To promote the εγ transformation, which is not complete even after heating the alloy to 1000 K, the As and Af temperatures are decreased and the transformation enthalpy is increased by thermal cycling and increasing prestrain. The alloy also shows good creep and stress relaxation resistance. In addition, under a tensile force of 20 kN and a sealing test pressure of 6 MPa pipe joints made using the alloy remain effective and can satisfy the requirements for possible industrial applications.  相似文献   

10.
A series of Fe40Mn28Ni32  xCrx (x = 4, 12, 18, 24 (at.%)) multicomponent alloys was prepared by vacuum arc melting. The Fe40Mn28Ni28Cr4, Fe40Mn28Ni20Cr12 and Fe40Mn28Ni14Cr18 alloys were ductile single phase fcc solid solutions. The Fe40Mn28Ni8Cr24 alloy had intermetallic sigma phase matrix and was extremely brittle after homogenization. The tensile properties of the Fe40Mn28Ni28Cr4, Fe40Mn28Ni20Cr12 and Fe40Mn28Ni14Cr18 solid solution alloys were examined in recrystallized condition with average grain size of ~ 10 μm. The yield strength increased from 210 MPa of the Fe40Mn28Ni28Cr4 alloy to 310 MPa of the Fe40Mn28Ni14Cr18 alloy. The elongation to fracture of the alloys decreased from 71% to 54%, respectively. Solid solution strengthening by the constitutive elements of the alloys was calculated using Labush approach. Strong solid solution strengthening by Cr was predicted. Gypen and Deruyttere approach was used to estimate solid solution strengthening of the Fe40Mn28Ni32  xCrx alloys. Good correlation between predicted solid solution strengthening and the experimental yield strength values was found.  相似文献   

11.
Abstract

The morphology and crystallographic phase of V–C carbide particles formed in cast Fe–Cr–Ni–V–C alloys were investigated by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM). The combination of results obtained with these techniques revealed that cuboidal, cruciform and spherical carbide particles were formed, depending on the alloy composition, all having the cubic-VC1?x structure (Fm-3m). Detailed TEM observations suggested that small carbide particles were initially cubic in shape and became spherical with increasing particle size. All cuboidal and spherical carbides were single crystallites with no grain boundary at any particle sizes, even after growing to 6 μm in diameter.  相似文献   

12.
The formation of secondary phases during isothermal treatments in the range 750–1000 °C and continuous cooling in 2205, 2507, 2304, and 2101 duplex stainless steels have been investigated. For all the steels herein considered, the Thermocalc calculations indicate the sigma and chi-phase precipitation which is confirmed by the experimental results only for the 2205 and 2507 grades. On the contrary, the secondary phases are very rarely observed after both isothermal aging (up to 750 h) and/or continuous cooling tests in the 2304 and 2101 Cr–Mn grades. This behavior could be justified by the different ferrite and austenite phase stability in the four grades, in the same temperature range of the sigma and chi precipitation, because these differences affect the dangerous phases precipitation mechanism and kinetic.  相似文献   

13.
Microstructure and mechanical properties of the Fe–25Cr–20Ni austenitic stainless steel after cryorolling with different reductions were investigated by means of optical, scanning and transmission electron microscopy, X-ray diffraction and mini-tensile testing. High density tangled dislocations and a small amount of deformation twins formed after 30% deformation. After 50% strain, a large amount of deformation twins was generated. Meanwhile, interactions between the twins and dislocations started to happen. As the strain increased to 70%, many deformation twins were produced and the interactions between the twins and dislocations were significantly enhanced. When the cryorolling was 90%, the grain size was refined to the nanometer scale. XRD analysis indicated that the diffraction peaks of the samples became broader with the strain increase. The yield strength and the ultimate strength increased from 305 MPa and 645 MPa (before deformation) to 1502 MPa and 1560 MPa (after 90% deformation), respectively. However, the corresponding elongation decreased from 40.8% to 6.4%. The tensile fracture morphology changed from typical dimple rupture to a mixture of quasi-cleavage and ductile fracture. After 90% deformation, the microhardness was 520 HV, which increased by 100% compared with the original un-deformed sample.  相似文献   

14.
Abstract

The constitution of the 75 at.%Ni section of the Ni–Cr–Al– Ta system has been determined at 1523 and 1273 K. Alloys annealed at these temperatures have been studied using electron probe microanalysis and X–ray diffraction, and their microstructures and associated hardness values have also been examined. The isothermal sections at 1523 and 1273 K contain the following phases: γ+γ′+Ni3Ta, and Ni6TaAI, with the following three–phase equilibria between them: γ+γ′+Ni6TaAI and γ+Ni3Ta+Ni6TaAl. The γ′–phase contains up to ~9 at.–%Ta. Some observations on as–cast structures have also been made.

MST/208  相似文献   

15.
Fe–35Ni–25Cr–0.4C alloys with different compositions are aged between 750 and 1150°C up to ~10,000?h. As-cast microstructure contains interdendritic carbides of type M7C3 (‘Cr7C3’) and MC (‘NbC’). At service temperatures, M7C3 transform into M23C6 (‘Cr23C6’) within hours. Then, a hardening precipitation of secondary intragranular M23C6 occurs over hundreds of hours, the nose of the ‘temperature-time-hardening’ curve being around 1000°C. G phase forms after long aging; its solvus temperature and formation kinetics depend on silicon content. Z phase is observed after long aging at 950°C or above. G and Z phases form at the expense of MC. Very long aging causes nitridation under air, with first a transformation of M23C6 into chromium-rich M2X carbonitrides (X?=?C,N), then of MC into chromium-rich MX carbonitrides.  相似文献   

16.
A series of soft ferrites in the system Ni1 ? xTbxFe2O4 (0  x  0.2), was prepared by a standard ceramic technique. The influence of terbium content was investigated by means of X-ray diffraction, Fourier Transform Infrared (FTIR) spectroscopy and scanning electron microscopy. The X-ray diffraction analysis reveals that the samples have a cubic spinel (single phase) structure for 0  x  0.08; for x > 0.08 a small peak of orthorhombic phase (TbFeO3) appears and becomes more conspicuous with increased terbium substitution. The lattice parameter changes in a non-linear way as a function of terbium content which may be attributed to differences in the ionic radii of the cations involved and the solubility limit of terbium ions. A gradual increase in the bulk density was observed with the increase of terbium concentration, from 5.13 g/cm3 to 5.69 g/cm3. FTIR absorption spectra of the Ni–Tb–Fe–O system were investigated in the wave number range 370–1500 cm? 1. Each spectrum exhibited two main absorption bands, thereby confirming the spinel structure.  相似文献   

17.
Hot deformation characteristics of a Fe-base superalloy were studied at various temperatures from 1000–1200°C under strain rates from 0·001–1 s − 1 using hot compression tests. Processing maps for hot working are developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate and interpreted by a dynamic materials model. Hot deformation equation was given to characterize the dependence of peak stress on deformation temperature and strain rate. Hot deformation apparent activation energy of the Fe–24Ni–11Cr–1Mo–3Ti superalloy was determined to be about 499 kJ/mol. The processing maps obtained in a strain range of 0·1–0·7 were essentially similar, indicating that strain has no significant influence on it. The processing maps exhibited a clear domain with a maximum of about 40–48% at about 1150°C and 0·001 s − 1.  相似文献   

18.
Room temperature tensile testing was performed on a coarse-grained polycrystalline Ni (32 μm), a nanocrystalline Ni (23 nm) and two nanocrystalline Ni–Fe (16 nm) electrodeposits at two strain rates of 10?1 and 10?2/s. Strain localizations and local temperature increases were simultaneously recorded during tensile testing. For all materials, higher loads or higher strain rate generally resulted in higher peak temperature with the highest temperatures recorded in the fracture regions. The maximum temperature for the nanocrystalline materials was just over 80 °C, which is significantly below the reported temperatures for the onset of thermally activated grain growth. Therefore, the previously reported grain growth observed on similar materials after tensile deformation is likely not thermally activated but a stress-induced phenomenon. Despite the wide grain range from 16 nm to 32 μm, all samples exhibited similar strain localization behavior. Local strain variations initiated in the early stage of macroscopic uniform deformation, subsequent necking and fracture took place in the region of initial strain localization. While the coarse-grained polycrystalline Ni exhibited little strain rate sensitivity, gradually increased strain rate sensitivity was observed for the 23 nm Ni and the two 16 nm Ni–Fe samples, suggesting that both dislocation-mediated and grain-boundary-controlled mechanisms were operative in the deformation of the nanocrystalline Ni and Ni–Fe samples.  相似文献   

19.
By using scanning electron microscopy,energy-dispersive spectrometry,X-ray diffraction,strength and hardness measurements,the microstructure,precipitation,mechanical properties,and corrosion resistance have been investigated for two super ferritic stainless steels,26Cr–3.5Mo–2Ni and 29Cr–3.5Mo–2Ni,with the aim to consider the effect of Cr content.The results showed that with the addition of Cr content,the recrystallization temperature was increased;the precipitation of Laves and Sigma(σ)phases was promoted and the mechanical properties of super ferritic stainless steel were modified.Furthermore,the pitting corrosion resistance and corrosion resistance to H_2SO_4 of the two super ferritic stainless steels were improved.In addition,suitable annealing processing is a key factor to maintain integrated performance by optimizing microstructure and removing detrimental precipitation phases.  相似文献   

20.
The electrochemical behavior of nano and microcrystalline Fe–10Cr and Fe–20Cr alloys was determined using potentiodynamic polarization in 0.5 M H2SO4. Disks of the alloys were prepared by high-energy ball milling followed by compaction and sintering. In the current study, nanocrystalline Fe–Cr alloys reveal significantly different electrochemical characteristics, typified by lower anodic current densities and more negative passivation potentials, compared with their microcrystalline counterparts. In addition to the differences in grain boundary density, compositional characterization of corrosion films carried out by X-ray photoelectron spectroscopy indicates a higher Cr content in the film developed upon nanocrystalline Fe–Cr alloys. Mechanisms for observed enhancement in the corrosion performance of the nanocrystalline Fe–Cr alloys are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号