首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A systematic study of geopolymers by 29Si and 27Al MAS NMR has been carried out in an attempt to understand polymer structural details. 27Al MAS NMR data shows that transient aluminium species are formed during the reaction of metakaolin with NaOH. Interaction of silicate anions with the aluminium sites of metakaolin was evident during the synthesis of geopolymers as observed from low field shift of 29Si MAS NMR resonance lines of silicate centres. As the reaction progresses, the coordination of aluminium (IV, V and VI) in metakaolin changes almost completely to IV. 29Si MAS NMR of selected compositions of the ternary system of sodium silicate, metakaolin and aqueous alkali reveals that geopolymerisation occurs in a distinct compositional region. At high alkalinity [> 30% (mol/mol) overall Na2O content], connectivity of silicate anions is reduced, consistent with poor polymerisation. At low alkalinity [<10% (mol/mol) overall Na2O content], a clear 29Si NMR resonance line due to unconverted metakaolin is observed. NMR spectra were recorded from a series of samples with a fixed Na2O content (20 mol%) and varied SiO2/Al2O3 ratio to observe aluminium substitution in the cross-linked silicon tetrahedra of polymer network. Aluminium insertion into the silicate network is confirmed from the observed 29Si NMR shift as a function of Si/Al ratio. The identification of the presence or absence of metakaolin in the cured geopolymer product is not possible even by 29Si NMR as the signal from metakaolin is indistinguishable from a broad 29Si NMR peak consisting of many resonance lines from the network of cross-linked silicon/aluminium tetrahedra. In an attempt to identify metakaolin signal, we prepared geopolymers with higher SiO2/Al2O3 molar ratios. Since aluminium substitutions in the silicate tetrahedral network are decreased, this results in better-resolved 29Si NMR lines. The 29Si NMR signal due to metakaolin is then distinguishable in the spectra of cured products in a series of samples with 3 to 11 mol% metakaolin. These results indicate that a geopolymer structure is a network of silicon/aluminium tetrahedra with some presence of unreacted metakaolin. The silicon/aluminium tetrahedra might have connectivity ranging from 1 to 4.  相似文献   

2.
The current status of the problem of obtaining high-purity silicon isotopes 28Si, 29Si, and 30Si is analyzed. The scheme of obtaining monoisotopic silicon includes the stages of isotope separation in the form SiF4, synthesis and deep purification of isotopically enriched silane, obtaining polycrystalline silicon-28,-29, and-30, and growing monocrystals. The basic problems and methods of their solution in the synthesis and deep purification of silane and obtaining poly-and monocrystals of isotopically enriched silicon are discussed. Data characterizing the achieved level of chemical and isotopic purity of high-purity monocrystals of silicon-28 with a main isotope content of more than 99.99% and silicon-29 and silicon-30 with isotopic purity higher than 99% are presented. In monocrystalline 28Si, the boron content was 4.5 × 1013, the phosphorus content was 5 × 1011, the carbon and oxygen contents were <1 × 1016 at/cm3, and the specific resistance was 800 Ω cm. The results of investigation of heat capacity, heat conduction, photoluminescence, and electron paramagnetic resonance spectra for monoisotopic silicon-28 are presented. The heat conduction of monoisotopic silicon is increased considerably owing to the reduced photon scattering on isotopic inhomogeneities. In the region of 20–30 K, the heat conduction of silicon-28 with an isotopic purity of 99.98% is higher by a factor of 8 than the heat conduction of natural silicon. Investigations of photoluminescence spectra in the magnetic field in the low-temperature region demonstrated the capability of optical detection of nuclear spin states of a phosphorus admixture in high-purity silicon-28. p ]Topical questions for further investigations and possible fields of practical application of high-purity isotopically enriched silicon are discussed.  相似文献   

3.
Understanding different bonding environments in various metal borides provides insight into their structures and physical properties. Polycrystalline aluminum diboride (AlB2) samples have been synthesized and compared both with a commercial sample and with the literature. One issue that arose is the relative ease with which boron-rich and aluminum deficient phases of aluminum borides can be presented in AlB2. Here, we report 27Al, 11B nuclear magnetic resonance (NMR) spectroscopy and first-principles calculations on AlB2 in order to shed light on these different bonding environments at the atomic level and compare the structural and electronic properties of the products of different preparations. Along with the aforementioned, the present study also takes an in-depth look at the nature of the 11B and 27Al nuclear spin–lattice relaxation recovery data for the AlB2 and other superhard materials. The nuclear spin–lattice relaxation has been measured for a static sample and with magic-angle spinning. The combination of NMR and band structure calculations highlights the synthetic challenges with superhard materials.  相似文献   

4.
99Tc NMR data for Tc compounds in various oxidation states are summarized.__________Translated from Radiokhimiya, Vol. 47, No. 4, 2005, pp. 291–304.Original Russian Text Copyright © 2005 by Mikhalev.  相似文献   

5.
Planar shock compression effects on void formation and cracking in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) are studied in this paper. Cracking was found to be a result of void linkage in some direction deviation from the maximum shear stress plane. Changing the state of the stress inside the BMG sample led to formation of different void distribution. Nucleation of the microvoids was possibly initiated by release of excess free volume under shock wave compression.  相似文献   

6.
La2O3 doped nanocrystalline zirconia (ZrO2) has been prepared by chemical co-precipitation method for various dopant concentrations, varying from 3 to 30 mol%. Structural phases have been characterized by X-ray diffraction technique. All the as-synthesized samples were found to be in monoclinic phase. Annealing of the samples at different temperatures from 400 to 1000∘C stabilized ZrO2 either partially or fully the tetragonal/cubic phases. When they were annealed at 1200∘C, the monoclinic phase appeared again with a new cubic pyrochlore structured La2Zr2O7 at the expense of stabilized tetragonal phase. Formability of the tetragonal/cubic phase has been influenced by the dopant concentration and the annealing temperature. Sample with 8 mol% La2O3 has been stabilized completely in tetragonal/cubic phase after annealing at 900∘C for 1 h. Smallness of the grain in these nanocrystalline materials may also have assisted in the formation of La2O3-ZrO2 solid solution.  相似文献   

7.
The structural transformations accompanying the mechanochemical synthesis of fine-particle γ-LiAlO2 have been studied by 6Li and 27Al NMR and in situ X-ray diffraction. Mechanical activation of a mixture of aluminum hydroxide and lithium carbonate in an AGO-2 planetary mill results not only in size reduction, intermixing, and partial amorphization of the starting materials but also in the mechanochemical synthesis of a carbonate form of aluminum lithium hydroxide. Subsequent heat treatment of the mechanically activated mixture leads to the release of water and carbon dioxide molecules and the formation of an X-ray amorphous phase containing aluminum in octahedral and tetrahedral oxygen coordination. The X-ray amorphous material converts to gamma lithium aluminate through an intermediate phase.  相似文献   

8.
Ba0.8Sr0.2TiO3 (BST) thick films co-doped with Yb3+ and Ho3+ were fabricated by the screen printing techniques on alumina substrates. The structure and morphology of the BST thick films were studied by XRD and SEM, respectively. After sintered at 1240 °C for 100 min the BST thick films are polycrystalline with a perovskite structure. The upconversion luminescence properties of the RE-doped BST thick films under 800 nm excitation at room temperature were investigated. The upconversion emission bands centered at 470 and 534 nm corresponding to 5F1 → 5I8 and 5F4 → 5I8 transition, respectively were observed, and the upconversion mechanisms were discussed. The dependence of the upconversion emission intensity upon the Ho3+ ions concentration was also examined; the emission intensity reaches a maximum value in the sample with 2 mol% Yb3+ and 0.250 mol% Ho3+ ions. All the results show that the BST thick films co-doped with Yb3+ and Ho3+ may have potential use for photoelectric devices.  相似文献   

9.
Procedures for isolation of 58Co, 54Mn, and 86Rb from 89Sr production wastes are described. The production of 89Sr was based on irradiation of natural Y in the form of oxide, placed in 1Cr18Ni10Ti stainless steel ampules, on a BR-10 fast reactor. 58Co and 54Mn were isolated from the casings of stainless steel ampules, and 86Rb, from the tail solution after the isolation of 89Sr.  相似文献   

10.
Yb3+/Tm3+-codoped oxychloride germanate glasses for developing potential upconversion lasers have been fabricated and characterized. Structural properties were obtained based on the Raman spectra analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energies of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1G43H6 and 1G43H4, respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of blue (477 nm) emission increases significantly, while the red (650 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the blue emissions than the red emission in oxychloride germanate glasses. The possible upconversion mechanisms are discussed and estimated. Intense blue upconversion luminescence indicates that these oxychloride germanate glasses can be used as potential host material for upconversion lasers.  相似文献   

11.
Compound CaAl4O7 (CA4), SrAl4O7 (SA4), CaAl12O19 (CA12) and SrAl12O19 (SA12) have been synthesized by using single step combustion method. The phosphors have been characterized by XRD, SEM and PL techniques. Both CA4 and SA4 possess monoclinic crystal structure whereas CA12 and SA12 possess hexagonal structure. Effects of crystal symmetry on the emission spectrum have been studied by doping the samples with Ce3+ and Eu2+ ions. The luminescence properties of Ce3+ and Eu2+ in these hosts is discussed on the basis of their covalent character and the crystal field splitting of the d-orbital of dopant ions. The spectroscopic properties, crystal field splitting, centroid shift, red shift and stokes shift have been studied. Spectroscopic properties of Eu2+ ions have been accurately predicted from those of Ce3+ ions in the same host. Most importantly experimental results were matched excellently with the calculated results. The preferential substitution of Ce3+ and Eu2+ at different Ca2+, Sr2+ crystallographic sites have been discussed. The dependence of emission wavelengths of Ce3+ and Eu2+ on the local symmetry of different crystallographic sites was also studied by using Van Uitert’s empirical relation. Differences in the emission spectrum of these samples have been observed despite their similar crystal structures and space group. Possible reasons have been discussed.  相似文献   

12.
A radiotracer technique has been used to achieve the carrier-free separation of 115mIn from its parent 115Cd in hydrochloric acid medium on a chromatographic column packed with TODGA-impregnated silica gel. At 8 M HCl, both cations are bound at the chelating site, which results in maximum adsorption. When the column is treated with 2 M HCl, the daughter complex gets desorbed and is eluted from the column, whereas the parent remains undisturbed. Pure silica gel does not adsorb radioactivity under these conditions. The radiochemical purity of daughter was checked by its half-life (4.49 h).  相似文献   

13.
The phosphors YAG co-doped with Ce3+–Yb3+ ion pair were successfully synthesized by solid state reaction method varying the concentration of Yb3+ ions from 1 to 15 % mol. The phosphors were characterized by powder X-ray powder diffraction and surface morphology was studied by scanning electronic microscope. The photoluminescence (PL) properties were studied by spectrophotometers in near infra red (NIR) and ultra violet visible region. The synthesized phosphors can convert a photon of blue region (469 nm) into photons of NIR region (979 and 992 nm). The co-operative energy transfer was studied by time decay curve and PL spectra. The theoretical value of quantum efficiency was calculated from steady time decay measurement and the maximum efficiency approached up to 145.19 %. Hence this phosphor could be used as a downconversion luminescent convertor in front of crystalline silicon solar cell (c-Si) panels to reduce thermalization loss due to spectral mismatch of the solar cells.  相似文献   

14.
High-quality ZnSe:Eu, Mn quantum dots (QDs) with white light emitting were synthesized via a green preparation method in an aqueous solution using thioglycolic acid as a stabilizing agent. The composition of the QDs could be flexibly controlled by varying the amount of Eu or Mn cation. The effects of reflux time and Eu2+ ion dopant concentration on the luminescence properties were systematically investigated. The obtained QDs were characterized by photoluminescence spectrometry, X-ray powder diffraction, and high-resolution transmission electron microscopy. The proposed method formed cubic ZnSe:Mn2+, Eu2+ QDs with the maximum emission peak at 460 and 580 nm. In the optimal condition, the quantum yields of ZnSe:Mn2+, Eu2+ QDs could reach 27.68%. The CIE color coordinates were (0.328, 0.334), which agreed with those of pure white light (0.33, 0.33). The results verified that the ZnSe:Mn2+, Eu2+ QDs exhibited potential in light-emitting diode applications.  相似文献   

15.
Bi3+-activated LaAlO3:Ho3+ Phosphor, was prepared by Polyol method, and its photoluminescent properties were investigated under (UV) light excitation. Luminescence studies indicated that optimum concentration of Bi3+ and Ho3+ in LaAlO3 was found to be 1 and 1.5 at.%. The luminescent intensity of Ho3+ emission lines was remarkably enhanced on exciting with 272 nm, which suggested that efficient energy transfer from Bi3+ ions to Ho3+ ions takes place. There is significant energy overlap between the emission band of Bi3+ ions and the excitation band of Ho3+ ions.The ET efficiency has been calculated and found to be 69%. The critical ET distance has been calculated by the concentration–quenching method. The enhanced intensity and tuned luminous color of LaAlO3: Bi3+/Ho3+ phosphors from blue to cyan provides a promising material for field emission display devices.  相似文献   

16.
The study utilizes an oral biocompatible material based on ethylene vinyl acetate copolymer (EVA) designed to release drugs in vitro at therapeutic levels over several days. We examined the drug stability during film casting process using proton and solid state NMR techniques. The drug-loaded EVA films were prepared from the dry sheet obtained by solvent (dichloromethane) evaporation of polymer casting solutions. Drugs tested include chlorhexidine diacetate (CDA), doxycycline hydrochloride (DOH), tetracycline hydrochloride (TTH) and nystatin (NST). Drug release from the films was examined for at least 14 days in 10 ml ddH2O (NST in water/ethanol (4:1)) which was replaced daily. Changes in optical density were followed spectraphotometrically. Effect of temperature on rate measurements was studied and the energies of activation (E) were calculated using Arrhenius plots. Effect of EVA copolymer composition on CDA release rate was also investigated. The enhanced rates with temperature increase may be attributed to the formation of channels with increased geometry in the polymer. The highest E observed for CDA compared to DOH and TTH may be related to their average molecular weights. Spectral analyses for CDA and NST revealed that the chemical and physical structures of the drugs remained unaffected during the film casting process.  相似文献   

17.
Europium-doped YVO4 phosphors have been synthesized using microwave radiation of 700 W power. The uniformity and high rate of microwave heating, as well as “nonthermal” effects of microwave radiation, considerably accelerate the decomposition of precursors and YVO4:Eu3+ synthesis. The europium concentration was varied from 1 to 8 at %. The luminescence intensity of YVO4:Eu3+ was shown to depend on Eu3+ concentration, with a maximum at 8 at % Eu3+. According to transmission electron microscopy data, the synthesized phosphors consist of nanoparticles 6 to 8 nm in size, with an appreciable degree of agglomeration.  相似文献   

18.
99m Tc-tricarbonyl-labeled chenodiol (chenodeoxycholic acid, CDCA) intended for hepatobiliary imaging was prepared by 30-min heating at 100°C with a radiochemical yield of >98%. The radiolabeling yield and stability of the complex were evaluated using different chromatographic techniques. Biodistribution studies in Albino Swiss mice at different time intervals after administration of the complexes showed that the maximum uptake of the complexes in the liver was 35.5 ± 0.25% ID/g at 30 min post injection. 99m Tc-tricarbonyl- CDCA shows promise for hepatobiliary imaging.  相似文献   

19.
The blue-emitting YPO4 phosphors doped with Yb3+ were prepared by a simple hydrothermal method. All the products were characterized by XRD and TEM, which revealed that they were zircon structure with leaf-like morphology. According to the analysis of photoluminescence spectra, upon ultraviolet (275 nm) excitation, the Yb3+ doped YPO4 phosphor showed an intense blue emission composed of two main bands at 420 and 620 nm assigned to charge transfer state (CTS) → 2F5/2 and CTS → 2F7/2, respectively. Moreover, the optimum doping concentration of Yb3+ in YPO4 phosphor was 1%, which exhibited the maximum emission intensity. The possible physical mechanism of concentration quenching was discussed, and the critical transfer distance determined to be 23.889 Å. In particular, the color purity of the as-synthesized Yb3+ doped YPO4 phosphor was as high as 83%, which made it an excellent candidate for blue-emitting materials.  相似文献   

20.
Intense Tm3+ blue upconversion emission has been observed in Tm3+–Yb3+ codoped oxyfluoride tellurite glass under excitation with a diode laser at 976 nm. Three emission bands centered at 475, 650 and 796 nm corresponding to the transitions 1G43H6, 1G43H4 and 3F43H6, respectively, simultaneously occur. The dependence of upconversion intensities on Tm3+ ions concentration and excitation power are investigated. For fixed Yb2O3 concentrations of 5.0 mol%, the maximum upconversion intensity was obtained with Tm2O3 concentration of about 0.1 mol%. The blue upconversion luminescence lifetimes of the Tm3+ transitions 1G43H6 are measured. The results are evaluated by the possible upconversion mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号