首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
SPS快速烧结制备纳米结构Ti5Si3-TiC复合材料   总被引:2,自引:0,他引:2  
采用金属钛和碳化硅为初始原料,采用放电等离子体快速烧结(SPS)技术制备了致密纳米结构的Ti5Si3-TiC复合材料.借助XRD、SEM和TEM考察了复合材料的相组成和显微结构,利用压痕法测定了其室温显微硬度和断裂韧性.结果表明利用SPS技术可在1260℃,保温8 min条件下使金属钛和碳化硅同步完成反应、烧结、致密化,生成Ti5Si3-TiC复合材料,并且晶粒细小,其中TiC晶粒尺寸<200nm.  相似文献   

2.
以铝为助剂结合放电等离子烧结工艺,在较低温度下快速制备出高纯致密Ti_3SiC_2块体材料,掺加适量铝能加快Ti_3SiC_2的反应合成,提高制备材料的纯度,并促进Ti_3SiC_2晶体的生长和材料的快速烧结致密,在升温速率为80℃/min,z轴压力为30MPa时,材料制备的最佳温度为1200~1250℃,所制备材料经XRD、SEM和EDS分析表明不含TiC和SiC等杂质相,Ti_3SiC_2为5~25μm的板状结晶。  相似文献   

3.
以Al-SiO_2为反应体系,通过烧结反应原位合成了(Al_2O_3+Si)_p/Al复合材料。研究了第二相含量、烧结时间以及热锻压等工艺对(Al_2O_3+Si)_p/Al复合材料的第二相形貌、尺寸及分布的影响,探讨了原位合成(Al_2O_3+Si)_p/Al复合材料的生成机制。研究表明,Si相含量随着第二相含量的增多而增多且与Al和Al_2O_3相界限相对明显;随着烧结时间的延长,Si相面积相对减小,Al_2O_3相的数量相对增加;锻压后,Si相和Al_2O_3分布更加均匀且尺寸减小。复合材料在液相烧结的过程中,高温下的液相粘性流动以及在原位反应时发生的颗粒重排与固相的溶解和沉淀对材料的致密化产生了较大的作用,当烧结温度达到1000℃时,Al_2O_3颗粒数量、分布情况都得到明显地改善。  相似文献   

4.
利用粉末冶金/放电等离子烧结技术制备了添加Mo、Cu、Ag和Nb的Ti_3SiC_2基复合材料,并察了Ti_3SiC_2/Mo、Ti_3SiC_2/Cu、Ti_3SiC_2/Ag和Ti_3SiC_2/Nb复合材料的相态组成和摩擦学性能。研究表明,金属相的添加会造成Ti_3SiC_2基体不程度的分解,生成TiC、Si和钛硅化合物,其中Mo和Cu与Ti_3SiC_2中化学反应活性较高的Si生成Mo_5Si_3、(Ti_(0.8)Mo_(0.2))Si_2、MoSi_2和Cu3Si等,而Ag和Nb未发生反应,在复合物中以金属单质相存在;四种复合物的摩擦学性能均优于纯Ti_3SiC_2,其中Ti_3SiC_2/Ag和Ti_3SiC_2/Nb复合物的抗磨损性能较好;晶粒拔出脱落造成的磨粒磨损是纯Ti_3SiC_2及其复合材料的主要磨损机制,复合材料中TiC及金属硅化物等硬质相在摩擦过程中定扎了周围的Ti_3SiC_2软基体,抑制了摩擦过程中晶粒的拔出脱落,但多物相并存又使得复合物晶间结合强度降低,导致磨损率提高;复合物中金属单质Ag和Nb的存在起到了一定程度的晶间强化作用;材料转移也是造成复合物磨损率高的一个原因。  相似文献   

5.
利用"冷压成型-真空烧结法"制备了碳化钨/高强钢复合材料。结合光学显微镜、扫描电镜和显微硬度计等分析测试技术对不同烧结温度下获得的复合材料以及界面的显微组织和硬度进行了分析。实验结果表明,烧结温度高于1 300℃时,碳化钨/高强钢复合界面存在明显的过渡层,且Fe、Co、Cr元素发生了明显的扩散,W元素在1 340℃时有微量扩散;随着烧结温度的升高,WC孔隙逐渐减少并趋于致密化;同时WC晶粒尺寸逐渐变大,且WC晶粒形状逐渐规则化。烧结温度为1 300和1 320℃时,WC晶粒尺寸均匀; WC的硬度随着烧结温度的升高而呈增大趋势,烧结温度为1 340℃时WC的硬度达到1 575 Hv_(0.1);在靠近结合界面处WC硬度明显高于碳化钨基体;在不同温度下,心部的高速钢材料硬度都在500 Hv_(0.1)左右。  相似文献   

6.
以硅铁粉、Fe-Si_3N_4粉末、钛铁矿粉为原料,采用自蔓燃法制备Si_3N_4-Fe_3Si复合材料。将Si_3N_4-Fe_3Si复合材料试样在1 650,1 700,1 750和1 800℃氮气气氛下进行烧结。采用X射线衍射、红外光谱分析、扫描电镜、维氏硬度等探究了烧结温度对Si_3N_4-Fe_3Si复合材料试样密度、孔隙率、显微结构、物相组成、力学性能的影响,并采用差示扫描量热法(DSC)探究了硅铁-钛铁矿混合物的燃烧过程。结果表明,烧结温度对氮化硅铁复合材料的显微结构、力学性能有显著的影响,随着烧结温度的升高,试样的密度、维氏硬度均增大,Si_3N_4-Fe_3Si复合材料的致密性增加;但弯曲强度和断裂韧性随着温度升高先增大后减小,在1 750℃达到最大值。在1 750℃时,试样的密度、维氏硬度、弯曲强度和断裂韧性分别为3.33 g/cm~3、9.85 GPa、331 MPa和8.5 MPa·m~(1/2)。弯曲强度提高了56%,断裂韧性提高了102%,表现出良好的抗弯强度和断裂韧性。在1 750℃时, Si_3N_4-Fe_3Si烧结试样主要物相为β-Si_3N_4、Y_2Si_2O_7、Fe_3Si和少量的Al_2O_3,完成了α-Si_3N4向β-Si_3N_4的变相,Fe_3Si在高温烧结条件下稳定性良好。  相似文献   

7.
采用金属钛粉和碳化硼为初始粉料,利用SPS放电等离子烧结技术制备了致密的纳米结构TiB2/TiC复合材料.并借助XRD、SEM考察了复合材料的相组成和显微结构,利用压痕法和小样品力学性能测试方法(MSP)测定了室温显微硬度、断裂韧性和MSP强度.研究结果表明:利用一步法直接升温至1550℃并保温6 min制备的复合材料,其晶粒尺寸大于1μm,MSP强度为833 MPa.而采用两步法升温至1550℃,然后迅速降低保温温度至1450℃,并保温6 min条件下使金属钛粉和碳化硼同步完成反应、烧结、致密化,生成晶粒细小的TiB2/TiC复合材料,晶粒尺寸大约为200 nm,并且所制备的复合材料力学性能更好,MSP强度达到1095 MPa.  相似文献   

8.
以金属Mo粉、Si粉和Al粉为原料,采用反应烧结法制备MoSi_2/Al_2O_3陶瓷复合材料,有效增强其室温韧性和强度,并揭示其电阻率随烧结温度变化规律。利用XRD和SEM分析不同温度烧结后MoSi_2/Al_2O_3复合材料试样的物相组成和微观结构;研究不同烧结温度下试样的力学和电学性能。结果表明:在氩气保护气氛下1 200℃时,MoSi_2/Al_2O_3陶瓷复合材料的各项性能较好,其显气孔率为20.7%,体积密度为4.8g/cm~3,断裂韧性值为9.72MPa·m1/2,电阻率为6.0×10~(-2)Ω·cm。所制备的MoSi_2/Al_2O_3陶瓷复合材料物相结构主要由Al_2O_3包覆MoSi_2形成的连续包覆相组成,组织结构均匀。烧结温度为1 200℃时,MoSi2导电相由弥散分布变成相互连接的网络状分布,且Al_2O_3包覆MoSi_2导电相的包覆层变薄,包裹的MoSi_2颗粒之间易于突破包覆相而互相连通,有助于降低电阻率。  相似文献   

9.
利用热压烧结方法原位合成了TiB2-TiC0.8-SiC复相陶瓷。通过光学显微镜(OM)、X射线衍射分析仪(XRD)和扫描电子显微镜(SEM)对材料物相组成和微观结构进行表征。研究了热压条件下烧结温度对材料物相组成、结构及力学性能的影响。结果表明:烧结温度在1700-1950℃范围内,随着温度的升高,材料的致密度、抗弯强度和断裂韧性都有显著改善。烧结温度为1900℃可得到完全致密的原位合成TiB2-TiC0.8-SiC复相陶瓷,材料的晶粒发育比较完善,条状TiB2和块状TiC0.8晶粒清晰可见。复合材料的维氏硬度、断裂韧性和弯曲强度分别达到23.6 GPa,(7.0±1.0)MPa.m1/2和470.9 MPa。当温度达到1950℃时,由于增强相TiB2晶粒长大,材料的强度降低。TiB2、TiC0.8与SiC颗粒协同,通过裂纹偏转、晶粒拔出、晶粒细化等机制对复合材料起到颗粒增强增韧的作用。  相似文献   

10.
通过共沉淀法制备La2O3掺杂Al_2O_3纳米粉,粉体经压制后分别采用微波和真空烧结制备Al_2O_3透明陶瓷。结果表明:Al_2O_3粉末颗粒大小均匀,近似球形,为40~60nm;两种烧结方式制备的试样XRD图中均为α-Al_2O_3,未检测到其它相。La2O3掺杂量为1%时,随烧结温度升高,两种烧结方法得到的Al_2O_3陶瓷的相对密度和抗弯强度均呈上升趋势,且微波烧结陶瓷的相对密度和抗弯强度明显高于真空烧结。1500℃烧结时,随La2O3掺杂量的增加,Al_2O_3陶瓷的相对密度均先增大后减小,当La2O3掺杂量为1%时,Al_2O_3陶瓷的相对密度和抗弯强度均最大。微波烧结陶瓷的透光率明显高于真空烧结,且其断口晶粒比真空烧结明显细少。  相似文献   

11.
采用Ti3SiC2与Ti3AlC2粉体和cBN粉体为原料,通过微波烧结制备Ti3SiC2与Ti3AlC2结合剂cBN复合材料,同时研究cBN的含量对该复合材料的物相组成与显微形貌的影响。结果表明,Ti3SiC2-cBN试样烧结后得到了SiC、TiSi2、TiC、TiO、TiO2、SiO2。cBN添加量为10%的复合材料中Ti3SiC2分解较为严重。试样烧结后基体组织比较细小,只有几微米。当原料中cBN含量为20%时,cBN表面会形成凹凸不平的组织。Ti3AlC2-cBN试样烧结后得到了Ti2AlC、TiC、Ti、Al、Al2O3,Ti3AlC2材料分解完全。cBN含量较高时,它可以与Ti3AlC2或其分解产物充分反应,形成相应的氮化物或碳氮化物。  相似文献   

12.
采用Ti、Si、TiC、金刚石磨料为原料,通过放电等离子烧结(SPS),制备了Ti3SiC2陶瓷结合剂金刚石材料.研究结果表明,Ti-Si-2TiC试样经SPS加热的过程中位移、位移率和真空度在1200℃时发生明显变化,表明试样发生了物理化学变化.XRD分析结果表明1200℃时试样发生化学反应生成了Ti3SiC2.随着温度升高,试样中Ti3SiC2含量逐渐增加.当烧结温度为1200℃、1300℃、1400℃和1500℃时,产物中Ti3SiC2含量分别为65.9%、79.97%、87.5%和90.1%.在Ti/Si/2TiC粉料中添加适量的金刚石5%和10%进行烧结,并未抑制Ti3SiC2的反应合成.SEM观察表明,金刚石与基体结合紧密,同时其表面生长着发育良好的Ti3SiC2板条状晶粒.提出了一种金刚石表面形成Ti3SiC2的机制,即金刚石表面的碳原子首先与周围的Ti反应生成TiC,然后TiC再与Ti-Si相发生化学反应,生成Ti3SiC2.  相似文献   

13.
以商用硅粉、碳粉、钛粉以及少量的铝粉为原料, 利用放电等离子烧结技术原位反应制备了Ti3SiC2-SiC复合材料. 利用盘销式摩擦磨损实验机测试了Ti3SiC2-SiC复合材料的耐摩擦磨损性能. 结果表明: 随着SiC含量的增加, 材料相对于硬化钢的摩擦系数和磨损系数均呈下降趋势, 这表明SiC的引入提高了复合材料的抗摩擦磨损性能. Ti3SiC2单相材料摩擦系数在0.8~1.0之间, 而Ti3SiC2-40vol% SiC复合材料在稳态下的摩擦系数达到了0.5, Ti3SiC2-40vol% SiC复合材料相对于Ti3SiC2单相材料的磨损系数下降了一个数量级. Ti3SiC2-SiC复合材料的高抗磨损性归因于磨损类型的改变以及SiC良好的抗氧化性能.  相似文献   

14.
通过放电等离子烧结工艺制备了氮化硅/锌铝基复合材料,重点探讨了氮化硅添加量对氮化硅/锌铝基复合材料致密度、硬度和摩擦性能的影响.采用扫描电子显微镜(SEM)及电子探针X射线显微分析仪(EPMA)对样品的微观组织进行了分析,并使用显微硬度仪、旋转摩擦试验仪对其性能进行了研究.结果表明:氮化硅在样品中分散均匀,且氮化硅的加入能够明显提高样品的致密度和硬度.当在锌铝合金中加入质量分数为20%氮化硅时,氮化硅/锌铝基复合材料致密度达到95.53%,同时与高锌铝合金烧结试样相比,其硬度提高了 58.5%,达到162.56HV.氮化硅/锌铝基复合材料的耐磨性随着氮化硅的添加呈现先增加后下降的趋势,添加量为20%时摩擦系数达到最佳为0.210 3,磨损量为0.003 37 mm3.  相似文献   

15.
反应烧结法制备(AlN,TiN)-Al2O3复合材料的研究   总被引:3,自引:1,他引:2       下载免费PDF全文
以Ti,Al,Al2O3为初始粉料,通过750~800℃氮气保护下的中温焙烧,然后在1420~1550℃在氮气氛下反应烧结,制备了不同配比的(AlN,TiN)-Al2O3复合材料。研究了组成及烧结工艺对复合材料力学性能、显微结构等的影响。用XRD,SEM等方法分析粉体及烧结体的相组成及微观结构。分析结果表明:AlN,TiN的形成,有助于材料的致密化并使其力学性能提高。组成为20wt%(Al,Ti)-Al2O3的粉体在1520℃、30MPa、保温、保压30min热压烧结条件下,与N2气反应可得到硬度(HRA)为 94.1的高硬度的(AlN,TiN)-Al2O3复合材料,该材料的抗弯强度为687 MPa,断裂韧性(KIC)为6.5MPa·m1/2。  相似文献   

16.
由机械合金化法(MA)制得纳米级Al2O3颗粒弥散镶嵌于微米级Cu颗粒表面的复合粉末, 利用球形化工艺改善所制得复合粉的形貌及粒度范围, 分别采用热压法(HP)和放电等离子体烧结(SPS)法制备Al2O3/Cu复合材料。通过测试密度、 电导率、 抗弯强度及SEM复合粉形貌和烧结体断口分析、 微区成分分析, 对比研究了Al2O3质量分数分别为0%、 0.5%、 1.0%、 1.5%时Al2O3/Cu复合材料的物理、 力学和电学性能。结果表明: 不同制备工艺下随着Al2O3含量增加, 材料的抗弯强度先增后降, 电导率除受杂质影响外, 还受材料缺陷的影响, 故变化规律不明显, 对于Al2O3含量相同的Al2O3/Cu复合材料, 采用SPS法制备的复合材料的致密度、 抗弯强度及电导率均高于HP法; 在弯曲应力下两种制备方法所得复合材料均发生延性断裂。  相似文献   

17.
为制备性能优良的Al_2O_3/430L复合型蜂窝载体材料,本文以430L不锈钢合金粉末、Al_2O_3粉末、粘结剂为原料,采用粉末增塑挤压技术挤压成形,并在1 100℃真空中烧结2 h获得Al_2O_3/430L复合型蜂窝材料.借助SEM、XRD及万能试验机,研究了添加Al_2O_3对Al_2O_3/430L复合型蜂窝材料的组织与性能的影响.研究表明:金属粉末颗粒在烧结过程中结合形成的基体组织为α-Fe(Cr),在基体晶粒间孔隙处和表面弥散分布着Al_2O_3颗粒.添加少量的Al_2O_3可提高烧结密度,制件表面光滑.随着Al_2O_3添加量增加,蜂窝材料表面负载催化涂层的能力增强;抗压强度随Al_2O_3添加量的增加先升高后降低,在Al_2O_3含量为2.5wt.%时,最大抗压强度达27 MPa.添加2.5wt.%Al_2O_3所制备的Al_2O_3/430L复合型蜂窝材料力学性能最佳、表面负载催化涂层的能力优良.  相似文献   

18.
(SiC,TiB2)/B4C复合材料的烧结机理   总被引:1,自引:2,他引:1       下载免费PDF全文
研究了在热压条件下制备 (SiC, TiB2)/ B4C复合材料的烧结机理。认为烧结助剂的加入使本体系成为液相烧结,同时粉料的微细颗粒对复合材料的烧结致密也有重要贡献。分析和测量了制取的复合材料的相组成、显微结构和力学性能。结果表明,采用B4C与Si3N4和少量SiC、TiC为原料,Al2O3+Y2O3为烧结助剂,在烧结温度1800~1880℃,压力30 MPa的热压条件下烧结反应生成了SiC、TiB2和少量的BN,制取了(SiC, TiB2)/B4C复合材料。所形成的晶体显微结构为层片状。制得的试样的硬度、抗弯强度和断裂韧性分别可达HRA88.6、540 MPa和5.6 MPa·m1/2。  相似文献   

19.
采用微波烧结的方法,在烧结温度分别为680℃,710℃,740℃,770℃,800℃制备了15%的SiCp/Al复合材料。探讨温度对材料的致密度和力学性能的影响。结果表明:致密度和材料硬度及冲击韧性随温度变化呈马鞍形,在770℃样品的密度和硬度及冲击韧性达到最佳值,分别为2.62g/cm3,42.6MPa,40J/cm2。结论:用微波烧结SiCp/Al复合材料可在短时间内使样品达到烧结致密化,缩短烧结时间,节约能源。  相似文献   

20.
在1400℃,用Ti,Si,C,Al,NaCl原料,氩气保护下无压烧结合成出纯净的、层状的Ti3SiC2陶瓷。用X射线衍射、扫描电子显微镜,透射电子显微镜对Ti3SiC2陶瓷的物相、表面形貌、微观结构进行表征。对合成出的Ti3SiC2陶瓷的微观形貌进行观察,发现Ti3SiC2晶体中有规整的六方形状的层状晶体,提出了Ti3SiC2晶体的自由生长的机理。Ti3SiC2晶体的生长机理由二维成核理论控制,台阶状晶体生长的形貌表明(002)晶面的生长要经过两个独立的过程。添加NaCl,有助于生成高纯度的层状Ti3SiC2陶瓷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号