首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Intense global competition, dynamic product variations, and rapid technological developments force manufacturing systems to adapt and respond quickly to various changes in the market. Such responsiveness could be achieved through new paradigms such as Reconfigurable manufacturing systems (RMS). In this paper, the problem of configuration design for a scalable reconfigurable RMS that produces different products of a part family is addressed. In order to handle demand fluctuations of products throughout their lifecycles with minimum cost, RMS configurations must change as well. Two different approaches are developed for addressing the system configuration design in different periods. Both approaches make use of modular reconfigurable machine tools (RMTs), and adjust the production capacity of the system, with minimum cost, by adding/removing modules to/from specific RMTs. In the first approach, each production period is designed separately, while in the second approach, future information of products’ demands in all production periods is available in the beginning of system configuration design. Two new mixed integer linear programming (MILP) and integer linear programming (ILP) formulations are presented in the first and the second approaches respectively. The results of these approaches are compared with respect to many different aspects, such as total system design costs, unused capacity, and total number of reconfigurations. Analyses of the results show the superiority of both approaches in terms of exploitation and reconfiguration cost.  相似文献   

2.
The dynamic nature of today’s manufacturing industry, which is caused by the intense global competition and constant technological advancements, requires systems that are highly adaptive and responsive to demand fluctuations. Reconfigurable manufacturing systems (RMS) enable such responsiveness through their main characteristics. This paper addresses the problem of RMS configuration design, where the demand of a single product varies throughout its production life cycle, and the system configuration must change accordingly to satisfy the required demand with minimum cost. A two-phased method is developed to handle the primary system configuration design and the necessary system reconfigurations according to demand rate changes. This method takes advantage of Reconfigurable Machine Tools in RMS. In fact, by adding/removing modules to/from a specific modular reconfigurable machine, its production capability could be increased, with lower cost. A novel mixed integer linear programming formulation is presented in the second phase of the method to optimise the process of selecting the best possible transformation for the existing machine configurations. Two different cases are designed and solved by implementing the established method. The results of these cases in terms of capital cost, capacity expansion cost, unused capacity and number of transformations, are compared with two hypothetical scenarios. Analyses of the obtained results indicate the efficiency of the proposed approach and offer a promising outlook for further research.  相似文献   

3.
The reconfigurable manufacturing system (RMS) is a recent manufacturing paradigm driven by the high responsiveness and performance efficiencies. In such system, machines, material handling units or machines components can be added, modified, removed or interchanged as needed. Hence, the design of RMS is based on reconfigurable machines capabilities and product specification. This paper addresses the problem of machines selections for RMS design under unavailability constraints and aims to develop an approach to ensure the best process plan according to the customised flexibility required to produce all parts of a given product. More specifically, we develop a flexibility-based multi-objective approach using an adapted version of the well-known non-dominated sorting genetic algorithm to select adequate machines from a set of candidate (potential) ones, in order to ensure the best responsiveness of the designed system in case of unavailability of one of the selected machines. The responsiveness is based on the flexibility of the designed system and a generated process plan, which guarantees the management of machines unavailability. It is defined as the ability and the capacity to adapt the process plan in response to machines unavailability. Two objectives are considered, respectively, the maximisation of the flexibility index of the system and the minimisation of the total completion time. To choose the best solution in the Pareto front, a multi-objective decision-making method called technique for order of preference by similarity to ideal solution is used. To demonstrate the applicability of the proposed approach, a simple example is presented and the numerical results are analysed.  相似文献   

4.
To improve the convertibility of reconfigurable manufacturing system (RMS), the concept of delayed reconfigurable manufacturing system (D-RMS) was proposed. RMS and D-RMS are both constructed around part family. However, D-RMS may suffer from ultra-long system problem with unacceptable idle machines using generic RMS part families. Besides, considering the complex basic system structure of D-RMS, machine selection of D-RMS should be addressed, including dedicated machine, flexible machine, and reconfigurable machine. Therefore, a system design method for D-RMS based on part family grouping and machine selection is proposed. Firstly, a part family grouping method is proposed for D-RMS that groups the parts with more former common operations into the same part family. The concept of longest relative position common operation subsequence (LPCS) is proposed. The similarity coefficient among the parts is calculated based on LPCS. The reciprocal value of the operation position of LPCS is adopted as the characteristic value. The average linkage clustering (ALC) algorithm is used to cluster the parts. Secondly, a machine selection method is proposed to complete the system design of D-RMS, including machine selection rules and the dividing point decision model. Finally, a case study is given to implement and verify the proposed system design method for D-RMS. The results show that the proposed system design method is effective, which can group parts with more former common operations into the same part family and select appropriate machine types.  相似文献   

5.
结构主动控制的一体化多目标优化研究   总被引:1,自引:0,他引:1  
基于Pareto多目标遗传算法提出了结构主动控制系统的一体化多目标优化设计方法,对作动器位置与主动控制器进行同步优化设计.外界激励采用平稳过滤白噪声来模拟,在状态空间下通过求解Lyapunov方程,得到结构响应和主动控制力的均方值.主动控制器采用LQG控制算法来进行设计.以结构位移和加速度均方值最大值与相应无控响应均方值的最大值之比,以及所需控制力均方值之和作为多目标同步优化的目标函数.优化过程还考虑了结构与激励参数对优化结果的影响.最后以某6层平面框架有限元模型为例进行了计算机仿真分析,结果表明所提出的主动控制系统多目标一体化优化方法简单,高效,实用,具有较好的普适性.  相似文献   

6.
This paper proposes a multi-objective optimization model for redundancy allocation for multi-state series–parallel systems. This model seeks to maximize system performance utility while minimizing system cost and system weight simultaneously. We use physical programming as an effective approach to optimize the system structure within this multi-objective optimization framework. The physical programming approach offers a flexible and effective way to address the conflicting nature of these different objectives. Genetic algorithm (GA) is used to solve the proposed physical programming-based optimization model due to the following three reasons: (1) the design variables, the number of components of each subsystems, are integer variables; (2) the objective functions in the physical programming-based optimization model do not have nice mathematical properties, and thus traditional optimization approaches are not suitable in this case; (3) GA has good global optimization performance. An example is used to illustrate the flexibility and effectiveness of the proposed physical programming approach over the single-objective method and the fuzzy optimization method.  相似文献   

7.
LI CHEN 《工程优选》2013,45(5):601-617
A formal multiobjective optimization method based on satisfaction metrics is presented for designing an engineering system with mathematical rigour. Three satisfaction-based design models with different tradeoff strategies are developed to facilitate the incorporation of satisfaction metrics into the context of design formulations. These models are derived from different combinations of satisfaction-incorporated design objectives, enabling the conversion of the original multiple objectives appropriately to a single unified goal. This makes it easy to apply any available single-objective mathematical programming solver for the resulting problem solving. Not only does the method generate a Pareto-optimal solution, but also it allows for the generation of many design alternatives in a feasible design space. A computational procedure is also suggested to guide design implementations. For illustration, an example is worked out to show the computational details and the utility of the newly developed design models.  相似文献   

8.
Various products required by customers are classified into several product families, each of which is a set of similar products. A reconfigurable manufacturing system (RMS) manages to satisfy customers, with each family corresponding to one configuration of the RMS. Then, the products belonging to the same family will be produced by the RMS under the corresponding configuration. The manufacturing system possesses the reconfigurable function for different families. In the design period of a RMS, there may exist several feasible configurations for each family. Then, an important issue in a RMS is the optimal configurations for the families. Based on a stochastic model, an optimization problem stemmed from the issue is formulated. Two algorithms are devised to solve the optimization problem. Numerical examples are presented for evaluating the efficiency of the algorithms.  相似文献   

9.
研究了一种单机环境下集成生产和维护的双目标优化调度问题。机床的故障间隔时间和平均维修时间服从指数分布,同时结合加工序列相关准备时间。预防性维护活动不能与作业加工同时进行,但与准备时间不相冲突。调度目标是同时最小化作业总计完成时间和机床不可得性。在问题建模的基础上,构造了一种基于Lorenz非劣关系的分类遗传算法(表示为L-NSGA-Ⅱ),详细设计了算法的核心部分。最后,通过大量计算实验,将L-NSGA-II算法与NSGA-II算法进行了比较分析,说明了L-NSGA-II算法的有效性。  相似文献   

10.
A numerical optimization technique based on gradient-search is applied to obtain an optimal design of a typical gating system used for the gravity process to produce aluminum parts. This represents a novel application of coupling nonlinear optimization techniques with a foundry process simulator, and it is motivated by the fact that a scientifically guided search for better designs based on techniques that take into account the mathematical structure of the problem is preferred to commonly found trial-and-error approaches. The simulator applies the finite volume method and the VOF algorithm for CFD analysis. The direct gradient optimization algorithm, sequential quadratic programming (SQP), was used to solve both a 2D and a 3D gating system design problems using two design variables. The results clearly show the effectiveness of the proposed approach for finding high quality castings when compared with current industry practices.  相似文献   

11.
To facilitate the configuration selection of reconfigurable manufacturing systems (RMS) at the beginning of every demand period, it needs to generate K (predefined number) best configurations as candidates. This paper presents a GA-based approach for optimising multi-part flow-line (MPFL) configurations of RMS for a part family. The parameters of the MPFL configuration comprise the number of workstations, the number of paralleling machines and machine type as well as assigned operation setups (OSs) for each workstation. Input requirements include an operation precedence graph for each part, relationships between operations and OSs as well as machine options for each OS. The objective is to minimise the capital cost of MPFL configurations. A 0-1 nonlinear programming model is developed to handle sharing machine utilisation over consecutive OSs for each part which is ignored in the existing approach. Then a novel GA-based approach is proposed to identify K economical solutions within a refined solution space comprising the optimal configurations associated with all feasible OS assignments. A case study shows that the best solution found by GA is better than the optimum obtained by the existing approach. The solution comparisons between the proposed GA and a particle swarm optimisation algorithm further illustrate the effectiveness and efficiency of the proposed GA approach.  相似文献   

12.
Abstract

In this study, an optimal structural design program was designed and developed for Computational Fluid Dynamics based on self-optimization, effectively reducing the time required for structural optimization. Through experimental design using this program, the effects of various design variables on the optimization objectives were evaluated, and an adaptive simulated annealing algorithm was used for global optimization. Furthermore, response surface methodology and a nonlinear quadratic programming algorithm were utilized to obtain a global optimum solution after repeated iterations. Moreover, using a hovercraft air-intake system as the optimized object, the total pressure loss of the system was completely optimized by using a porous medium model and Matlab analysis program, and the accuracy of the structural design optimization program was validated. After the global optimization, the total pressure loss of the air-intake system was reduced by 20.5% compared to the original model. An average nonuniformity of 4.36% of engine inlet speed and 5% local nonuniformity of 11.19% satisfy the design requirements of the hovercraft engine. This method can be directly applied to engineering optimization problems as well as multiobjective optimization tasks after improving the relevant methodologies.  相似文献   

13.
This study proposes particle swarm optimization (PSO) based algorithms to solve multi-objective engineering optimization problems involving continuous, discrete and/or mixed design variables. The original PSO algorithm is modified to include dynamic maximum velocity function and bounce method to enhance the computational efficiency and solution accuracy. The algorithm uses a closest discrete approach (CDA) to solve optimization problems with discrete design variables. A modified game theory (MGT) approach, coupled with the modified PSO, is used to solve multi-objective optimization problems. A dynamic penalty function is used to handle constraints in the optimization problem. The methodologies proposed are illustrated by several engineering applications and the results obtained are compared with those reported in the literature.  相似文献   

14.
基于梯度的优化方法对复合材料层合板进行了变刚度铺层优化设计。在优化过程中需确定铺层中各单元的密度以及角度。为了使优化结果具有可制造性,优化结果需满足制造工艺约束并且铺层角度需从预定角度中选取。为了避免在优化问题中引入过多的约束并减少设计变量的数目,提出密度分布曲线法(DDCM)对层合板中各单元的密度进行参数化。根据各单元的密度以及角度设计变量并基于Bi-value Coding Parameterization(BCP)方法中的插值公式确定各单元的弹性矩阵。优化过程中以结构柔顺度作为优化目标,结构体积作为约束,优化算法采用凸规划对偶算法。对碳纤维复合材料的算例结果表明:采用DDCM可得到较理想的优化结果,并且收敛速率较快。  相似文献   

15.
This paper describes a novel implementation of the Simulated Annealing algorithm designed to explore the trade-off between multiple objectives in optimization problems. During search, the algorithm maintains and updates an archive of non-dominated solutions between each of the competing objectives. At the end of search, the final archive corresponds to a number of optimal solutions from which the designer may choose a particular configuration. A new acceptance probability formulation based on an annealing schedule with multiple temperatures (one for each objective) is proposed along with a novel restart strategy. The performance of the algorithm is demonstrated on three examples. It is concluded that the proposed algorithm offers an effective and easily implemented method for exploring the trade-off in multiobjective optimization problems.  相似文献   

16.
Various products required by customers are classified into several product families, each of which is a set of similar products. A reconfigurable manufacturing system (RMS) manages to satisfy customers, with each family corresponding to one configuration of the RMS. Then, the products belonging to the same family will be produced by the RMS under the corresponding configuration. The manufacturing system possesses the reconfigurable function for different families. A performance measure is defined as service levels for the families. A semi-Markov process is formulated for obtaining the performance measure. When a larger fluctuation in the market happens, the manufacturer can adjust the system to improve the performance measure. An optimization of a reassigning problem is discussed, which reassigns the maximum numbers of orders to the families. Two solution approaches are proposed to solve the problem. Numerical examples are given for illustrating the methodologies.  相似文献   

17.
We consider a machine rescheduling problem that arises when a disruption such as machine breakdown occurs to a given schedule. Machine unavailability due to a breakdown requires repairing the schedule as the original schedule becomes infeasible. When repairing a disrupted schedule a desirable goal is to complete each disrupted job on time, i.e. not later than the planned completion time in the original schedule. We consider the case where processing times of jobs are controllable and compressing the processing time of a job requires extra processing cost. Usually, there exists a nonlinear relation between the processing time and manufacturing cost. We solve a bicriteria rescheduling problem that trades off the number of on-time jobs and manufacturing cost objectives. We give a mixed-integer second-order cone programming formulation for the problem. We develop a heuristic search algorithm to generate efficient solutions for the problem. Heuristic algorithm searches solution space by moving and swapping jobs among machines. We develop cost change estimates for job moves and swaps so that the heuristic implements only promising moves and hence generates a set of efficient solutions in reasonably short CPU times.  相似文献   

18.
LI CHEN  S. S. RAO 《工程优选》2013,45(3-4):177-201
Abstract

A new methodology, based on a modified Dempster-Shafer (DS) theory, is proposed for solving multicriteria design optimization problems. It is well known that considerable amount of computational information is acquired during the iterative process of optimization. Based on the computational information generated in each iteration, an evidence-based approach is presented for solving a multiobjective optimization problem. The method handles the multiple design criteria, which are often conflicting and non-commensurable, by constructing belief structures that can quantitatively evaluate the effectiveness of each design in the range 0 to 1. An overall satisfaction function is then defined for converting the original multicriteria design problem into a single-criterion problem so that standard single-objective programming techniques can be employed for the solution. The design of a mechanism in the presence of seven design criteria and eighteen design variables is considered to illustrate the computational details of the approach. This work represents the first attempt made in the literature at applying DS theory for numerical engineering optimization.  相似文献   

19.
The scheduling process that aims to assign tasks to members is a difficult job in project management. It plays a prerequisite role in determining the project’s quality and sometimes winning the bidding process. This study aims to propose an approach based on multi-objective combinatorial optimization to do this automatically. The generated schedule directs the project to be completed with the shortest critical path, at the minimum cost, while maintaining its quality. There are several real-world business constraints related to human resources, the similarity of the tasks added to the optimization model, and the literature’s traditional rules. To support the decision-maker to evaluate different decision strategies, we use compromise programming to transform multi-objective optimization (MOP) into a single-objective problem. We designed a genetic algorithm scheme to solve the transformed problem. The proposed method allows the incorporation of the model as a navigator for search agents in the optimal solution search process by transferring the objective function to the agents’ fitness function. The optimizer can effectively find compromise solutions even if the user may or may not assign a priority to particular objectives. These are achieved through a combination of non-preference and preference approaches. The experimental results show that the proposed method worked well on the tested dataset.  相似文献   

20.
基于区间分析,提出了一种考虑公差的汽车车身耐撞性稳健优化设计模型,可在有效降低耐撞性能对设计参数波动敏感性的同时实现公差范围的最大化。该模型首先利用对称公差来描述汽车碰撞模型中车身关键耐撞部件的主要尺寸、位置和形状等设计参数本身的不确定性,然后将参数设计和公差设计相结合,建立了以稳健性评价指标和公差评价指标为优化目标,设计变量名义值和公差同步优化的多目标优化模型。再次,利用区间可能度处理不确定约束,将该优化模型转换为确定性多目标优化模型。最后,将该模型应用于两个汽车耐撞性优化设计问题,并通过序列二次规划法和改进的非支配排序遗传算法进行求解,结果表明该方法及稳健优化设计模型可行且实用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号