首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study investigates the use of Graphene Nanoplatelets (GNP) in cement composite to quantify the material damage extent. The damage sensing capability of this new cement composite is demonstrated by experimentally measuring the electric potential across prisms with a known notch depth and comparing it with the finite element simulations. Meanwhile, the damage extent is directly related to the change in electric potential based on a mathematical analogy between the electrostatic field and the elastostatic field under anti-plane shear loading. It is shown that the fractional change in electric potential arising from damage is equivalent to the fractional change in elastic compliance, which can be exploited for structural health evaluation.  相似文献   

2.
Polymer composites can be benefited in many ways through the addition of carbon nanotubes (CNT). For instance, CNT can build up a percolated network within the polymer matrix, which results in a composite material with electrical conductivity and piezoresistive characteristics. This has very important implications for the realization of self-stress sensing structural composites. Moreover, the remarkable optical and transport properties of CNT permit to obtain information about the stress state of the composite at different scales. In the present work, the local and global stress response of SWCNT-epoxy composites is characterised by simultaneous Raman spectroscopic and electrical measurements on nanocomposite specimens submitted to different levels of surface strain. Both the Raman G′-band resonance frequency and the electrical resistance of the composite are found to change monotonically with strain until an inflection point is reached at ∼1.5% strain. Increased sensitivity of the piezoresistive network and lower load transfer efficiency occur beyond this strain level, and are considered to be the result of CNT slippage from the polymer. The reversibility of the stress sensitivity of the composites is verified by performing cyclic loading tests. Hysteresis loop are found to develop earlier on the Raman curves as in the resistance curves, which indicates that even at low strain levels, permanent damage is induced in the vicinity of carbon nanotubes. The use of Raman spectroscopy in combination with electrical methods provides a further insight on the stress sensing capabilities of CNT and the factors which affect the sensitivity and reproducibility of this behaviour.  相似文献   

3.
The use of new reinforcing materials like carbon nanofibers (CNFs) makes it possible to produce cement based nanocomposites with revolutionary properties. However, in order to take advantage of the CNF’s excellent reinforcing efficiency it is necessary to achieve a uniform distribution in the matrix. In this work, nanofiber cementitious composites were produced containing CNFs at an amount of 0.048 wt.% of cement. To achieve good dispersion of the CNFs, a method utilizing a surfactant and ultrasonic processing, was employed. The method was optimized using two parameters: the effect of ultrasonic energy and the effect of surfactant to CNF (SFC/CNF) ratio. Initially, the SFC/CNF ratio on the dispersion of two types of CNFs, one subjected to a new special debulking method and one with minimal debulking process, was investigated. An ultrasonic energy of 2800 kJ/l and a SFC/CNF ratio close to 4.0 was found to be optimal for effective dispersion. Following these values, cement based nanocomposites reinforced with four types of CNFs, subjected to different debulking processes and having different morphology, were produced. Their nanostructure was studied using scanning electron microscopy (SEM). Their mechanical performance was evaluated using fracture mechanics tests. All four CNFs were found to control nanoscale cracking. As a result, both the flexural strength and the stiffness of the nanocomposites were significantly improved. Furthermore, the reinforcing efficiency of the CNFs in the cementitious matrix was shown to depend on the debulking procedure: at later ages, the use of the CNF subjected to the special debulking process was found to be more efficient in improving the mechanical performance of the nanocomposites.  相似文献   

4.
In the present work, carbon nanotube (CNT) fibers had been embedded to glass fiber reinforced polymers (GFRP) for the structural health monitoring of the composite material. The addition of the conductive CNT fiber to the non-conductive GFRP material aims to enhance its multi-function ability; the test specimen’s response to mechanical load and the insitu CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. It is the first time this fiber is used in composite materials for sensing purposes; CNT fiber is easy to be embedded and does not downgrade the material’s mechanical properties. Various incremental loading–unloading steps had been applied to the manufactured specimens in tension as well as in three-point bending tests. The CNT fiber worked as a sensor in both, tensile and compression loadings. A direct correlation between the mechanical loading and the electrical resistance change had been established for the investigated specimens. For high stress (or strain) level loadings, residual resistance measurements of the CNT fiber were observed after unloading. Accumulating damage to the composite material had been calculated and was correlated to the electrical resistance readings. The established correlation between these parameters changed according to the material’s loading history.  相似文献   

5.
Inherent sensing of load, micro-damage and stress transferring effects were evaluated for carbon nanotube (CNT) and carbon nanofiber (CNF)/epoxy composites (with various added contents) by an electro-micromechanical technique, using the four-point probe method. Carbon black (CB)/epoxy composites, with conventional nanosize material added, were used for the comparison with CNT and CNF composites. Subsequent fracture of the carbon fiber in the dual matrix composites (DMC) was detected by acoustic emission (AE) and by the change in electrical resistance, ΔR due to electrical contacts of neighboring CNMs. Stress/strain sensing of the nanocomposites was detected by an electro-pullout test under uniform cyclic loading/subsequent unloading. CNT/epoxy composites showed the best sensitivity to fiber fracture, matrix deformation and stress/strain sensing, whereas CB/epoxy composite exhibited poorer sensitivity. From the apparent modulus (as a result of matrix modulus and interfacial adhesion), the stress transferring effects reinforced by CNT was highest among three CNMs. The thermodynamic work of adhesion, Wa as found by dynamic contact angle measurements of the CNT/epoxy composite as a function of added CNT content was correlated and found to be consistent with the apparent mechanical modulus. Uniform dispersion and interfacial adhesion appear to be key factors for improving both sensing and mechanical performance of nanocomposite. Thermally treated-CNF composites exhibited a slightly higher apparent modulus, whereas higher testing temperatures appeared to lower the apparent modulus.  相似文献   

6.
In this paper, the reduced graphene oxide (rGO)–polymer nanocomposite films were prepared by two comparable methods, and their electrical performances at large deformation were measured and analyzed. It is concluded that the gauge factor (GF) value of strain-sensing composite strongly depends on rGO’s content and preparing process. The composites with rGO’s content between percolation threshold and the content which rGO conducting as a complete network show better sensitive electrical response. What’s more, strong interface interaction between conducting filler and matrix benefits the improvement of GF value. The composites we prepared display significant and consistent changes in their GF values when subjected to large deformation, which are suitable for large structural deformation monitoring in advanced civil engineering.  相似文献   

7.
P. Ramesh Babu  B. Pradhan   《Composites Part A》2007,38(12):2412-2421
This paper deals with the study of the effect of drilling induced delamination damage levels and residual thermal stresses (developed during manufacturing process of cooling the laminate form curing temperature to room temperature) on delamination growth behaviour emanating form circular holes in graphite/epoxy laminated FRP composites. Two sets of full three dimensional finite element analyses (one with the residual thermal stresses developed while curing the laminate and the other without residual thermal stresses i.e. with mechanical loading only) have been performed to calculate the displacements and interlaminar stresses along the delaminated interfaces responsible for the delamination onset and propagation. Modified crack closure integral (MCCI) techniques based on the concepts of linear elastic fracture mechanics (LEFM) have been used to calculate the distribution of individual modes of strain energy release rates (SERR) to investigate the interlaminar delamination initiation and propagation characteristics. Asymmetric variations of SERR obtained along the delamination front are caused by the overlapping stress fields due to the coupling effect of thermal and mechanical loadings. It is found that parameters such as ply orientation, drilling induced damage levels and material heterogeneity at the delaminated interface dictate the interlaminar fracture behaviour of laminated FRP composites.  相似文献   

8.
The non-linear stress–strain behaviour of plant fibre composites is well-known in the scientific community. Yet, the important consequences of this, in terms of the evolution of stiffness as a function of applied strain and cycles to failure, are not well-studied in literature. This is despite the fact that stiffness degradation is a well-accepted indicator of damage in a composite material, and is regularly used as a component failure criterion. This article systematically explores the evolution of stiffness of various aligned plant fibre composites, subjected to (i) monotonic loading, (ii) low-cycle, repeated progressive loading, and (iii) fatigue loading. The evolution in stiffness in plant fibre composites is found to be complex: structural changes in the elementary fibre cell wall and damage development in the composite have often competing effects on stress–strain behaviour. Indeed, the evolution in stiffness of plant fibre composites is found to be unlike that typically observed in traditional composites, and therefore needs to be taken into account in the design of structural components.  相似文献   

9.
In this work we present concepts and prototypes of a novel class of chiral honeycomb core with embedded sensing characteristics for potential structural health monitoring (SHM) and other multifunctional applications. The cellular structure concepts, all having negative Poisson’s ratio behaviour, have piezoelectric sensors and their hardware support embedded on the surface, or within the unit cell plates. Both the sensors and the infrastructure provide not only the capability of detecting signals proportional to the external mechanical loading, but act also as load-bearing units. The honeycombs have been produced using vacuum-casting techniques and resin transfer moulding methods, with micro fibre composites (MFCs) embedded in their cell walls. The sensing and mechanical performance of the prototypes are evaluated using finite element simulations, static tests, broadband vibration excitation and impact at low kinetic energy levels using an airgun.  相似文献   

10.
We report an in situ analysis of the microstructure of woven composites using carbon nanotube (CNT)-based conductive networks. Two types of specimens with stacking sequences of (0/90)s (on-axis) and (22/85/−85/−22) (off-axis) were manufactured using ultra-high-molecular-weight polyethylene fibers and a CNT-dispersed epoxy matrix via vacuum-assisted resin transfer molding. The changes in the electrical resistance of the woven composites in response to uniaxial loading corresponded to the changes in the gradient of the stress–strain curves, which is indicative of the initiation and accumulation of microscopic cracking and delamination. The electrical resistance of the woven composites increased due to both elongation and microscopic damage; interestingly, however, it decreased beyond a certain strain level. In situ X-ray computed tomography and biaxial loading tests reveal that this transition is due to yarn compaction and Poisson’s contraction, which are manifest in textile composites.  相似文献   

11.
The influence of the machining quality on the mechanical behavior of CFRP composites is yet not fully understood. There are only few works in the literature that have investigated the effect of the machining quality on CFRP. In fact, most of these works focus only on conventional machining such as axial or orbital drilling. The aim of this paper is to examine the influence of two machining processes namely conventional machining (CM) and abrasive water jet machining (AWJM) on the mechanical behavior of composite plates under cyclic loading. For this purpose, an experimental study using several composite plates drilled with a cutting tool and an abrasive water jet machining was carried out. In order to study the impact of the process of machining on the mechanical behavior, thermographic infrared testing and fatigue cyclic tests were performed to assess temperature evolutions, stiffness degradation, and the damage evolution in these plates. Fatigue testing results have shown that the damage accumulation in specimens drilled with CM process was higher than the AWJM specimens. Furthermore, the endurance limit for a composite plate drilled with CM was approximately 10% inferior compared to specimens drilled with AWJM. This difference can be related to the initial surface integrity after machining induced by the difference in the mechanism of material’s removal between the two processes used.  相似文献   

12.
Corrosion of steel in concrete is one of the major causes of premature deterioration of reinforced concrete structures, leading to structural failure. To prevent the failure of concrete structures because of corrosion, impermeable and high performance concretes should be produced various mineral admixtures. In this study, plain and reinforced concrete members are produced with mineral admixtures replacing cement. Ground granulated blast-furnace slag (GGBFS) has replaced cement as mineral admixture at the ratios of 0%, 25% and 50%. The related tests have been conducted at the ages of 28 and 90, after exposing these produced plain and reinforced concrete members to two different curing conditions. The unit weight, ultrasonic pulse velocity, splitting tensile and compressive strength tests are conducted on plain concrete members. Half-cell potential and accelerated corrosion tests are also conducted on reinforced concrete members. According to the test results, it is concluded that the curing age and type are important and corrosion resistant concrete can be produced by using GGBFS mineral admixture at the ratio of 25%.  相似文献   

13.
The interest in using fibre‐reinforced composites in structural components is increasing. Some of these structural composites, such as wind turbine blades, aircraft components and torsion shafts are subject to fatigue loadings. It is widely accepted that fully reversed cyclic loading is the most adverse loading for fibre‐reinforced composites, but the modelling of the material behaviour under this loading condition is very difficult. In this paper, a damage model is presented for woven glass fibre‐reinforced composites subject to fully reversed cyclic loading. First fatigue experiments have been conducted in displacement‐controlled fully reversed bending and the stiffness degradation and damage patterns have been observed. Based on these experimental data, a damage model has been developed, which includes the in‐plane stress components and the degradation of the in‐plane elastic properties. The model has been implemented in a commercial finite‐element code and simulation of the successive stages in the fatigue life has been performed. The model has been validated for a plain woven glass fabric reinforced composite and simulated stiffness degradation, damage growth and damage distribution have been compared with experimental data.  相似文献   

14.
Monotonic, multi-step and cyclic short beam shear tests were conducted on 2D and 3D woven composites. The test results were used to determine the effect of z-yarns on the inter-laminar shear strength as well as the multi-loading behavior. The presence of z-yarns was found to affect not only the inter-laminar shear strength of the composite but also the behavior of the composite beyond the elastic limit. Microscopic examination of the damaged specimens revealed large delamination cracks in 2D woven composites while delamination cracks were hindered by z-yarns in 3D composites. This crack arrest phenomena resulted in a reduction in inter-laminar crack lengths and a higher distribution of the micro-cracks throughout the 3D composite. The multi-step and cyclic loading tests are found to be useful in the monitoring of specimen behavior during short beam shear testing. The induced damage was quantified in terms of the loss of strength and stiffness during each loading cycle. It was found that while the 2D composites have higher damage resistance, the 3D composites have a higher damage tolerance.  相似文献   

15.
Abstract: In this investigation, an efficient fatigue life computation method under variable amplitude loading of structural components has been proposed. Attention in this study is focused on total fatigue life estimation of aircraft structural components. Flat specimens with central hole made of quenched and tempered steel 13H11N2V2MF were tested as representatives of different structural components. Total fatigue life of these specimens, defined as sum of fatigue crack initiation and crack growth life, was experimentally determined. Specimens were tested by blocks of positive variable amplitude loading. Crack initiation life was computed using theory of low‐cycle fatigue (LCF) properties. Cyclic stress–strain curve, Masing’s curve and approximate Sonsino’s curve were used for determining stress–strain response at critical point of considered specimens. Computation of crack initiation life was realised using Palmgren–Miner’s linear rule of damage accumulation, applied on Morrow’s curves of LCF properties. Crack growth life was predicted using strain energy density method. In this method, the same LCF properties were used for crack initiation life and for crack growth life computations also. Computation results are compared with own experimentally obtained results.  相似文献   

16.
A nonlinear constitutive model for large deformation loading at different strain rate condition was developed to represent tensile progressive damage of the nonlinear large deformation rate dependent behavior of polymer-based composite materials. The material was characterized by using off-axis composite specimens at different strain rates. A new failure criterion was proposed for the analysis of different loading directions and strain rates. Based on a method of combining the nonlinear constitutive theory and the proposed failure criterion for different strain rates, the progressive damage behavior of large deformation composites was represented. The strength of the material was also successfully represented with a single material constant.  相似文献   

17.
应变率对T300/Al(L2)复合丝拉伸性能的影响   总被引:1,自引:1,他引:0  
利用MTS810试验机和自行研制的冲击拉伸试验装置对T300/Al复合丝实施了不同应变率下的拉伸试验,获得了材料从0.001s^-1到1300s^-1应变率范围内完整的应力应变曲线。结果表明:T300/Al是一种应变率敏感复合材料,随着应变率的提高,材料的拉伸强度、失稳应变均相应提高,具有明显的应变率强化效应和动态韧性现象,这主要是由铝基体的应变率强化效应和应变率历史效应引起的。根据材料在不同应变率下的试验结果以及对其不同变形阶段机理的分析,提出了弹塑性复合丝束模型,并由此建立了相应的应变率相关的一维统计损伤本构方程,模型拟合结果与试验结果一致。  相似文献   

18.
This paper presents an analytical and experimental study on the strain sensing behavior of carbon nanotube (CNT)-based polymer composites. Tensile tests were conducted on CNT/polycarbonate composites and the responses in the electrical resistance were measured during the tests. An analytical model incorporating the electrical tunneling effect due to the matrix material between CNTs was also developed to describe the electrical resistance change as a result of mechanical deformation. The model deals with the inter-nanotube matrix deformation at the micro/nanoscale due to the macroscale deformation of the nanocomposites. A comparison of the analytical predictions and the experimental data showed that the proposed model captures the sensing behavior. In addition, the effect of the micro/nanoscale structures on the strain induced resistance change was discussed to provide useful information for designing CNT-based polymer composites with high strain sensing capability.  相似文献   

19.
Developments in producing nanostructured materials with novel properties have opened up new?opportunities in which unique functionality can be added to existing material systems. As?advanced fiber composites are utilized more frequently in primary structural applications there is a key challenge to enhance the performance and reliability while reducing maintenance. As?a?consequence there is tremendous scientific and technical interest in the development of techniques for monitoring the health of composite structures where real-time sensing can provide information on the state of microstructural damage. In this research we utilize electrically conductive networks of carbon nanotubes as in?situ sensors for detecting damage accumulation during cyclic loading of advanced fiber composites. Here we show that, by combining load and strain measurements in real-time with direct current electrical resistance measurements of the carbon nanotube network, insight can be gained toward the evolution and accumulation of damage. The resistance/strain relations show substantial hysteresis due to the formation and opening/closing of cracks during cyclic loading. Through interpreting the resistance response curves we identify a parameter that may be utilized as a quantitative measure of damage.  相似文献   

20.
The requirements of passive security, notably in the transport industry, impose to maximize the dissipation of the energy and to minimize the decelerations undergone by a vehicle and thus passengers due to violent shocks (crash). This paper aims at establishing efficient expected answers towards the preoccupations mainly emanating from transport industry. Currently, the behaviour laws implemented in the dynamic explicit schemes (RADIOSS, PAM-CRASH and LS-DYNA) do not integrate sufficiently the physical aspects in the material degradation, mainly the damage process, their kinetics, the variability and especially the heterogeneity of the composite materials microstructure. This paper deals with the development of a multi-scale predictive model coupling specific experimental methodologies and the micromechanical formulation of damage mechanisms in order to build constitutive laws for discontinuous fibre reinforced composites materials. The developed micromechanical modelling is based on an experimental methodology conducted over a range of strain rates from quasi static to 250 s−1. The latter has enabled identifying local probabilistic damage criterion formulated through the Weibull’s statistical integrating the strain rate effect and describing the progressive interfacial debonding under rapid loading. The developed model has been validated to predict the stiffness reduction and the overall elastic visco-damage behaviour for SMC composite material. The model simulations agree well with high speed tensile tests and confirm that the damage threshold and kinetic in the SMC are mainly strain rate sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号