首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of partial recrystallization (RX) on the low cycle fatigue (LCF) behavior of directionally solidified DZ4 superalloy was studied using in situ scanning electron microscopy. Three typical recrystallization microstructures were prepared on the fatigue samples, via shot peening and subsequent heat treatment. The effect of RX on LCF life is evidently related to the specific RX microstructure. The RX layer does not necessarily reduce the LCF life. The fatigue crack initiation and short crack propagation behaviors for both raw DZ4 and recrystallized samples were in situ examined, which rationalized the observed effect of recrystallization on the LCF life variation.  相似文献   

2.
In modern electronic packaging, especially surface mount technology (SMT), thermal strain is usually induced between components during processing, and in service, by a mismatch in the thermal expansion coefficients. Since solder has a low melting temperature and is softer than other components in electronic packaging, most of the cyclic stresses and strains take place in the solder. Fatigue crack initiation and fatigue crack propagation are likely to occur in the solder even when the cyclic stress is below the yield stress. It is an objective of this research to study the behaviour of fatigue crack initiation and propagation in both lead‐containing solder (63Sn‐37Pb), and lead‐free solders (Sn‐3.5Ag). The effect of alloying (Cu and Bi addition), frequency, tensile hold time and temperature on low cycle fatigue (LCF) behaviour of the solders is discussed. Mechanisms of LCF crack initiation and propagation are proposed and LCF life prediction, based on the various models, is carried out.  相似文献   

3.
Abstract

Due to high temperatures and mechanical loads, cracks are initiated in aero engine turbine blades which limit the cyclic life of these components. The materials used for components which underlie high thermal and mechanical load are single crystalline (SX) nickel based super alloys that in most cases contain a certain amount of rhenium. Dramatically increasing Re prices lead to the development of Re-free alloys.

In this work, low-cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) tests were carried out on the Re-free single crystal M-247LC SX. The test results are shown and a model based on crack propagation was used to predict LCF and TMF life. It was shown, that the modeling results fit properly for out-of-phase TMF and LCF life while for in-phase TMF differences between calculated life and experiments occur due to a different mechanism of fracture.  相似文献   

4.
Foreign object damage (FOD) has been identified as one of the main life limiting factors for aeroengine blades, with the leading edge of aerofoils particularly susceptible. In this work, a generic edge ‘aerofoil’ geometry was utilized in a study of early fatigue crack growth behaviour due to FOD under low cycle fatigue (LCF), high cycle fatigue (HCF) and combined LCF and HCF loading conditions. Residual stresses due to FOD were analyzed using the finite element method. The longitudinal residual stress component along the crack path was introduced as a nodal temperature distribution, and used in the correction of the stress intensity factor range. The crack growth was monitored using a nanodirect current potential drop (DCPD) system and crack growth rates were correlated with the corrected stress intensity factor considering the residual stresses. The results were discussed with regard to the role of residual stresses in the characterization of fatigue crack growth. Small crack growth behaviour in FODed specimens was revealed only after the residual stresses were taken into account in the calculation of the stress intensity factor, a feature common to LCF, HCF and combined LCF + HCF loading conditions.  相似文献   

5.
The cyclic deformation and lifetime behaviors of a single crystal nickel-based superalloy CMSX-4 have been investigated under out-of-phase thermomechanical fatigue (OP TMF) and isothermal low cycle fatigue (LCF) conditions. OP TMF life exhibited less than a half of LCF life although smaller inelastic strain range and lower mean stress level during OP TMF were observed compared to those during LCF. During OP TMF cycling, the maximum tensile strain at the minimum temperature was found to accelerate the surface crack initiation and propagation. Additionally, the multiple groups of parallel twin plates near crack provided a preferential path for crack propagation.  相似文献   

6.
An improved understanding of fatigue crack growth phenomena applicable to titanium engine disks was developed through complimentary experimental and analytical investigations of Ti-17. The effect of low cycle fatigue (LCF) on the high cycle fatigue (HCF) threshold and rate of crack propagation was studied. A simplified variable-amplitude spectrum, consisting of high-R cycles, corresponding to HCF loading, and periodic R=0.1 cycles, corresponding to LCF loading, was used to demonstrate a load-interaction effect. When the ratio of HCF to LCF cycles was 100 or more the fatigue crack growth lifetimes were significantly lower than predicted using linear damage summation methods assuming no load-interaction effect. Thus, it was concluded that the LCF cycle accelerated the fatigue crack growth rate of subsequent HCF cycles, even when closure was concluded to be negligible. A phenomenological model was formulated based on hypothesized changes in the propagation resistance, KPR, and fit to the test data. The model confirmed that the periodic LCF cycles increased fatigue crack growth rates of subsequent HCF cycles.  相似文献   

7.
Fatigue crack initiation and propagation behaviours were studied based on the dynamic response simulation by the three‐dimensional finite‐element analysis (FEA) and dynamic response experiments for tensile‐shear spot‐welded joints. The entire fatigue propagation behaviour from the surface elliptical cracks at the initiation stage to the through thickness cracks at the final stage was taken into consideration during the three‐dimensional FEA dynamic response simulations. The results of the simulations and experiments found that the fatigue cracks of spot‐welded joint from initial detectable crack sizes to crack propagation behaviour could be described by three stages. Approximately one‐half of the total fatigue life was taken in stage I, which includes micro‐crack nucleation and the small crack growth process; 20% of the total fatigue life in stage II, in which the existing surface crack propagates through the thickness of sheet and 30% of the total fatigue life in stage III, during which the through thickness crack propagates along the direction of plate width to the final failure. According to the relationship between the crack length and depth and the dynamic response frequency during the simulated fatigue damage process, the definition of fatigue crack initiation and propagation stages was proposed. The analysis will provide some information for the fatigue life prediction of the spot‐welded structures.  相似文献   

8.
Abstract: In this investigation, an efficient fatigue life computation method under variable amplitude loading of structural components has been proposed. Attention in this study is focused on total fatigue life estimation of aircraft structural components. Flat specimens with central hole made of quenched and tempered steel 13H11N2V2MF were tested as representatives of different structural components. Total fatigue life of these specimens, defined as sum of fatigue crack initiation and crack growth life, was experimentally determined. Specimens were tested by blocks of positive variable amplitude loading. Crack initiation life was computed using theory of low‐cycle fatigue (LCF) properties. Cyclic stress–strain curve, Masing’s curve and approximate Sonsino’s curve were used for determining stress–strain response at critical point of considered specimens. Computation of crack initiation life was realised using Palmgren–Miner’s linear rule of damage accumulation, applied on Morrow’s curves of LCF properties. Crack growth life was predicted using strain energy density method. In this method, the same LCF properties were used for crack initiation life and for crack growth life computations also. Computation results are compared with own experimentally obtained results.  相似文献   

9.
Fatigue crack growth rates have been experimentally determined for the superalloy GH2036 (in Chinese series) at an elevated temperature of 550 °C under pure low cycle fatigue (LCF) and combined high and low cycle fatigue (CCF) loading conditions by establishing a CCF test rig and using corner-notched specimens. These studies reveal decelerated crack growth rates under CCF loading compared to pure LCF loading, and crack propagation accelerates as the dwell time prolongs. Then the mechanism of fatigue crack growth at different loadings has been discussed by using scanning electron microscope (SEM) analyses of the fracture surface.  相似文献   

10.
Within the past decade, critical plane approaches have gained increasing support based on correlation of experimentally observed fatigue lives and microcrack orientations under predominately low cycle fatigue (LCF) conditions for various stress states. In this paper, we further develop an engineering model for microcrack propagation consistent with critical plane concepts for correlation of both LCF and high cycle fatigue (HCF) behavior, including multiple regimes of small crack growth. The critical plane microcrack propagation approach of McDowell and Berard serves as a starting point to incorporate multiple regimes of crack nucleation, shear growth under the influence of microstructural barriers, and transition to linear crack length-dependent growth related to elastic-plastic fracture mechanics (EPFM) concepts. Microcrack iso-length data from uniaxial and torsional fatigue tests of 1045 steel and IN 718 are examined and correlated by introducing a transition crack length which governs the shift from nonlinear to linear crack length dependence of da/dN. This transition is related to the shift from strong microstructural influence to weak influence on the propagation of microcracks. Simple forms are introduced for both the transition crack length and the crack length-dependence of crack growth rate within the microcrack propagation framework (introduced previously by McDowell and Berard) and are employed to fit the 1045 steel and IN 718 microcrack iso-length data, assuming preexisting sub-grain size cracks. The nonlinear evolution of crack length with normalized cycles is then predicted over a range of stress amplitudes in uniaxial and torsional fatigue. The microcrack growth law is shown to have potential to correlate microcrack propagation behavior as well as damage accumulation for HCF-LCF loading sequences and sequences of applied stress states.  相似文献   

11.
The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of Cr–Mo–V low alloy steel which was used for forged railway brake discs was studied. Tensile strength and LCF properties were examined over a range from room temperature (RT) to 600 °C using specimens cut from circumferential direction of a forged disk. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior and behaves Masing type, especially at higher strain amplitudes. At higher than 600 °C, carbide particles aggregated and a decarburized layer developed near the specimen surface. Micro voids distribute within the depth of 50 μm from the specimen surface could coalesce with fatigue cracks. Multiple crack initiation sites were observed on the fracture surface. The oxide film that generated at 600 °C covered the fatigue striations and accelerated the crack propagation. Final fracture area with bigger and deeper dimples showed better ductility at higher temperature. The investigated LCF behavior can provide reference for brake disc life assessment and fracture mechanisms analysis.  相似文献   

12.
Most of the research on crack closure has been devoted to crack propagation under small scale yielding. In this paper, the effect of different length scale from micro-crack to long cracks and different loading conditions from low cycle fatigue, LCF, to small scale yielding on crack closure are considered. The main focus is on LCF crack closure behaviour which is studied by in situ fatigue experiments in a scanning electron microscope. The results demonstrate the importance of crack closure for the explanation of the LCF behaviour. The change of crack closure from LCF to high cycle fatigue and their consequences for lifetime prediction will be discussed.  相似文献   

13.
To investigate the effect of bulk damage on fatigue crack initiation, crack initiations due to low‐cycle fatigue of Type 316 stainless steel were observed by electron backscatter diffraction (EBSD) and scanning electron microscopy. The EBSD observations showed that local misorientation developed inhomogeneously due to the cyclic strain, and many cracks were initiated from the slip steps and grain boundaries where the local misorientation was relatively large. The crack initiations could be categorized into two types: enhancement of the driving force by geometrical discontinuity (slip steps and notches), and reduction of material resistance against crack initiation caused by accumulated bulk damage at grain boundaries. In particular, more than half of the cracks were initiated from grain boundaries. However, in spite of the significant bulk damage, the fatigue life was extended by removing the surface cracks under strain of 1 and 2% amplitude. The stress state at the microstructural level was changed by the surface removal, and the damaged portion did not suffer further damage. It was concluded that although bulk damage surely exists, the fatigue life can be restored to that of the untested specimen by removing the surface cracks.  相似文献   

14.
This study examined fatigue propagation behaviour and fatigue life of weld root cracks under mixed mode I and III loading. Fatigue tests were performed on butt-welded joints with a continuous lack-of-penetration (LOP) inclined at angles of 0°, 15°, 30° or 45° to the normal direction of the uniaxial cyclic load. Branch and/or co-planar crack propagation was observed, depending on the initial mode I stress intensity factor (SIF) range. Co-planar crack propagation predominated when the SIF range was large. The fatigue crack propagation mode affected fatigue life; the life of branch crack propagation was longer than that of co-planar crack propagation. Using an initial equivalent SIF range based on a maximum strain energy release rate criterion, the results obtained from the 0°, 15°, 30°, and 45° specimens indicated almost the same fatigue lives, despite the different inclination angles.  相似文献   

15.
The concept of damage tolerance is now largely employed to evaluate the fatigue life of structures. However, part of this fatigue relies on the initiation and growth of small cracks. The fatigue behaviour of a naval structural steel (S355NL) was investigated. In order to characterize the behaviour of short and long cracks, tests were performed under constant amplitude loading for several load ratios between –1.0 and 0.5. A major part of fatigue life is constituted by short crack initiation and propagation.  相似文献   

16.
研究高峰值应力条件下Ti60钛合金双态组织和片层组织的低周疲劳与保载疲劳性能,利用金相显微镜(OM)、扫描电子显微镜(SEM)和电子背散射衍射(EBSD)等观察和分析Ti60钛合金的显微组织与疲劳断裂行为。结果表明:显微组织对低周疲劳性能影响不大,但显著影响保载疲劳性能,双态组织保载疲劳敏感性大于片层组织;保载情况下,疲劳寿命显著下降;随峰值应力的提高,疲劳寿命下降,保载疲劳敏感性增加;相同循环周次内,保载疲劳塑性应变累积大于低周疲劳,双态组织的塑性应变累积大于片层组织;低周疲劳裂纹萌生于试样表面,为单裂纹源,而保载疲劳裂纹为内部多源萌生;断口表面均存在准解理小平面,双态组织断口准解理小平面密度大于片层组织。  相似文献   

17.
Surface fatigue crack propagation is the typical failure mode of engineering structures. In this study, the experiment on surface fatigue crack propagation in 15MnVN steel plate is carried out, and the crack shape and propagation life are obtained. With the concept of ‘equivalent thickness’ brought into the latest three‐dimensional (3D) fracture mechanics theory, one closure model applicable to 3D fatigue crack is put forward. By using the above 3D crack‐closure model, the shape and propagation life of surface fatigue crack in 15MnVN plates are predicted. The simulative results show that the 3D fracture mechanics‐based closure model for 3D fatigue crack is effective.  相似文献   

18.
Effects of prior low cycle fatigue (LCF) cycling on the subsequent high cycle fatigue (HCF) limit stress corresponding to a life of 107 cycles are investigated for Ti-6Al-4V at room temperature. Tests are conducted at 420 Hz on an electrodynamic shaker-based system at several different LCF maximum loads and under subsequent HCF at R=0.1, 0.5 and 0.8 using a step loading procedure. Under these load combinations, which include the possibility of overload or underload effects if cracks form, there is no statistically significant effect of the prior LCF on the subsequent HCF limit stress. While LCF loading at a high stress of 900 MPa is seen to result in strain ratcheting, no distinct features on the fracture surface and different mechanisms of crack propagation from those obtained at lower maximum loads were observed. LCF loading up to 50% of expected life did not produce any indications of crack formation from either the stress limit data or the fracture surfaces.  相似文献   

19.
The fatigue behaviour of a nodular cast iron containing casting defects has been investigated in the high-cycle fatigue regime. In this paper, we propose a fatigue life assessment model for flawed materials based on a fracture mechanics approach which takes into account the position and size of the defect, short crack behaviour and the notch effect introduced by the defect. The fatigue behaviour of smooth samples, and long and short crack behaviour have been experimentally determined in order to identify the relevant mechanical parameters; these being introduced into the model. An experimental study has been made both in air and in vacuum in order to account for the position of the defect, noting that internal defects are supposed to be under vacuum conditions. Experimental results, which are based on a two-crack front-marking technique specially developed for this study, show that the propagation of natural cracks is controlled by the effective stress intensity factor in air as well as in vacuum. The K calculation for a short crack in the stress field of a notch is analysed using numerical elastic–plastic results. Comparison between experimental results and the computation of fatigue life for fatigue lives less than 106 cycles shows that the fatigue behaviour of nodular cast iron is controlled by a propagation process. The model proposed is thus relevant for fatigue lives less than 106 cycles so that the defect can be considered as a crack and the initiation stage neglected. Closer to the fatigue limit, this study shows that the initiation stage should be considered in the assessment of fatigue life of nodular cast iron, because a single macroscopic propagation assessment is not enough to describe the whole fatigue life. The defect cannot be considered as a pre-existent crack in the high-cycle fatigue range (>106 cycles), and the initiation stage that contains microcrack propagation around the defect should be evaluated when assessing the high-cycle fatigue life of nodular cast iron.  相似文献   

20.
In order to provide a sufficient theoretical basis for the fatigue-resistant design of the aircraft wheels, strain-controlled low-cycle fatigue (LCF) tests were carried out on specimens machined in the extrusion direction (ED) and transverse direction (TD) of die-forged 2014 aluminum alloy wheels. Although the TD specimens have lower tensile strength and yield strength, the fatigue test results show that the TD specimens have superior fatigue life compared with the ED specimens at total strain amplitudes of 0.5–0.8%. This is predominantly caused by the coarse Al12(MnSi)2(FeCu) intermetallic particles close to the surface layer, which results in a relatively short crack initiation stage for the ED specimens. In contrast, TD specimens with finer and more uniform recrystallized grains exhibit more excellent resistance to fatigue crack initiation (FCI) and propagation (FCP). Moreover, the fatigue life of alloys could be accurately predicted via a Manson–Coffin–Basquin (MCB) model based on total strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号