首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
We demonstrate the application of terahertz (THz) time-of-flight tomographic imaging to identify the distribution of defects in foam materials. Based on THz time-domain spectroscopy technology, THz imaging probes targets with picosecond pulses of broad-band radiation in the frequency range from 100 GHz to 3 THz. The reflected THz wave from the target is measured using electrooptic sampling, which provides two-dimensional images with phase and amplitude information, as well as the spectroscopic properties of the object. The depth information is recorded in the THz time-domain waveform. Several reconstruction models are developed for tomographic imaging of defects inside foam. Foam insulation of space shuttle fuel tanks, with prebuilt defects, are investigated with THz tomographic imaging. Most prebuilt defects are pinpointed and models used to identify different kinds of defects are discussed.  相似文献   

2.
A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm.  相似文献   

3.
The terahertz (THz) regime (0.1-10 THz) is rich with emerging possibilities in sensing, imaging and communications, with unique applications to screening for weapons, explosives and biohazards, imaging of concealed objects, water content and skin. Here we present initial surveys to evaluate the possibility of sensing plastic explosives and bacterial spores using field-deployable electronic THz techniques based on short-pulse generation and coherent detection using nonlinear transmission lines and diode sampling bridges. We also review the barriers and approaches to achieving greater sensing-at-a-distance (stand-off) capabilities for THz sensing systems. We have made several reflection measurements of metallic and non-metallic targets in our laboratory, and have observed high contrast relative to reflection from skin. In particular, we have taken small quantities of energetic materials such as plastic explosives and a variety of Bacillus spores, and measured them in transmission and in reflection using a broadband pulsed electronic THz reflectometer. The pattern of reflection versus frequency gives rise to signatures that are remarkably specific to the composition of the target, even though the target's morphology and position is varied. Although more work needs to be done to reduce the effects of standing waves through time-gating or attenuators, the possibility of mapping out this contrast for imaging and detection is very attractive.  相似文献   

4.
Yasui T  Yasuda T  Sawanaka K  Araki T 《Applied optics》2005,44(32):6849-6856
We propose a paintmeter for noncontact and remote monitoring of the thickness and drying progress of a paint film based on the time-of-flight measurement of the echo signal of a terahertz (THz) electromagnetic pulse. The proposed method is effectively applied to two-dimensional mapping of the painting thickness distribution for single-layer and multilayer paint films. Furthermore, adequate parameters for the drying progress are extracted from the THz pulse-echo signal and effectively applied to monitor the wet-to-dry transformation. The THz paintmeter can be a powerful tool for quality control of the paint film on the in-process monitoring of car body painting.  相似文献   

5.
In this letter, segmentation techniques for terahertz (T-ray) computed tomographic (CT) imaging are investigated. A set of linear image fusion and novel wavelet scale correlation segmentation techniques is adopted to achieve material discrimination within a 3-D object. The methods are applied to a T-ray CT image dataset taken from a plastic vial containing a plastic tube. This setup simulates the imaging of a simple nested organic structure, which provides an indication of the potential for using T-ray CT imaging to achieve T-ray pulsed signal classification of heterogeneous layers  相似文献   

6.
太赫兹(THz)波是频率位于0.1 THz^10 THz的电磁波。因其具有非电离性,以及可与多数生物分子产生共振响应等特性,在生物医学领域有着巨大应用潜力,尤其在肿瘤检测方面。太赫兹成像技术作为生物医学领域一种新的成像技术,吸引国内外多个研究小组对其开展深入研究。本文列举分析了多种太赫兹成像技术在肿瘤检测的应用,其中可分为太赫兹扫描成像、太赫兹层析成像、太赫兹全息成像以及太赫兹近场成像,介绍了这些成像方式的基本原理以及国内外研究现状,最后对太赫兹成像技术在生物领域的未来做出展望。  相似文献   

7.
作为太赫兹技术中的重要组成部分,太赫兹脉冲焦平面成像一经问世就引起了行业内的广泛关注,人们引入了各种方法去提升此成像技术的测量性能,同时也尝试将此成像技术应用于不同的工业和基础研究领域。本文综述了近年来人们对太赫兹脉冲焦平面成像的技术改良和应用研究,包括提升成像系统的空间分辨率、信噪比、信息获取能力,以及将此成像技术应用于光谱识别检测、超表面器件功能验证、太赫兹特殊光束测量、太赫兹表面波观测等,希望该综述能够推动太赫兹脉冲焦平面成像的进一步技术革新和应用拓展。  相似文献   

8.
Yasui T  Kabetani Y  Ohgi Y  Yokoyama S  Araki T 《Applied optics》2010,49(28):5262-5270
We report on a real-time terahertz (THz) impulse ranging (IPR) system based on a combination of time-of-flight measurement of pulsed THz radiation and the asynchronous-optical-sampling (ASOPS) technique. The insensitivity of THz radiation to optical scattering enables the detection of various objects having optically rough surfaces. The temporal magnification capability unique to ASOPS achieves precise distance measurements of a stationary target at an accuracy of -551 μm and a resolution of 113 μm. Furthermore, ASOPS THz IPR is effectively applied to real-time distance measurements of a moving target at a scan rate of 10 Hz. Finally, we demonstrate the application of ASOPS THz IPR to a shape measurement of an optically rough surface and a thickness measurement of a paint film, showing the promise of further expanding the application scope of ASOPS THz IPR. The reported method will become a powerful tool for nondestructive inspection of large-scale structures.  相似文献   

9.
Isikman SO  Bishara W  Ozcan A 《Applied optics》2011,50(34):H253-H264
Optical sectioning of biological specimens provides detailed volumetric information regarding their internal structure. To provide a complementary approach to existing three-dimensional (3D) microscopy modalities, we have recently demonstrated lensfree optical tomography that offers high-throughput imaging within a compact and simple platform. In this approach, in-line holograms of objects at different angles of partially coherent illumination are recorded using a digital sensor-array, which enables computing pixel super-resolved tomographic images of the specimen. This imaging modality, which forms the focus of this review, offers micrometer-scale 3D resolution over large imaging volumes of, for example, 10-15 mm(3), and can be assembled in light weight and compact architectures. Therefore, lensfree optical tomography might be particularly useful for lab-on-a-chip applications as well as for microscopy needs in resource-limited settings.  相似文献   

10.
Good contrast is seen between normal tissue and regions of tumor in terahertz pulsed imaging of basal cell carcinoma (BCC). To date, the source of contrast at terahertz frequencies is not well understood. In this paper we present results of a spectroscopy study comparing the terahertz properties (absorption coefficient and refractive index) of excised normal human skin and BCC. Both the absorption coefficient and refractive index were higher for skin that contained BCC. The difference was statistically significant over the range 0.2 to 2.0 THz (6.6 cm(-1) to 66.6 cm(-1)) for absorption coefficient and 0.25 to 0.90 THz (8.3 cm(-1) to 30 cm(-1)) for refractive index. The maximum difference for absorption was at 0.5 THz(16.7 cm(-1)). These changes are consistent with higher water content. These results account for the contrast seen in terahertz images of BCC and explain why parameters relating to the reflected terahertz pulse provide information about the lateral spread of the tumor. Knowing the properties of the tissue over the terahertz frequency range will enable the use of mathematical models to improve understanding of the terahertz response of normal and diseased tissue.  相似文献   

11.
A high-resolution large-area terahertz (THz) scanning imaging system is demonstrated based on a 124×124 pyroelectric array camera and a CO(2) pumped continuous-wave THz laser. By applying a scanning mechanism to the real-time imaging setup, images of large-area targets were accomplished. Self-made resolution charts were employed to test the resolution. In order to improve the image quality, the noise in the images was studied and modeled, and then the performance of several denoising methods was compared with real-time THz original images. The experimental results show that, with the help of anisotropic diffusion, noise can be effectively suppressed, and the results are visually pleasant even when there is great attenuation. Those results greatly confirm application potentials of THz imaging using pyroelectric cameras in the field of concealed object detection.  相似文献   

12.
Broadband terahertz (THz) waves were generated by optical parametric processes based on laser light scattering from the polariton mode of a nonlinear crystal. By using the parametric oscillation of a MgO-doped LiNbO3 crystal pumped by a nanosecond Q-switched Nd:YAG laser, we have realized a broadband, high-energy and compact THz-wave source. We report the development of a THz-wave parametric generator (TPG) using a small pump source with a short pulse width and a top-hat beam profile. These characteristics of the pump beam permit high-intensity pumping especially close to the output surface of the THz wave without thermal damage to the crystal surface. We also calculated the outcoupled THz wave for beams with two different intensity profiles: a top-hat beam (in this experiment) and a Gaussian beam (previously reported). The result shows the mechanism of the output energy and/or power enhancement.  相似文献   

13.
The stand-off imaging properties of a terahertz (THz) interferometric array are examined. For this application, the imaged object is in the near-field region limit of the imaging array. In this region, spherical and circular array architectures can compensate for near-field distortions and increase the field of view and depth of focus. Imaging of THz point sources is emphasized to demonstrate the imaging method and to compare theoretical predictions to experimental performance.  相似文献   

14.
Podzorov A  Gallot G 《Applied optics》2008,47(18):3254-3257
We have performed high-precision terahertz time-domain spectroscopy measurements on polymers (cross-linked polystyrene, TPX, Zeonor) from 0.2 to 4.2 THz. They show very interesting terahertz and visible transparency. We also investigated the terahertz characteristics of PDMS, a polymer extensively used in microfluidics, which showed absorption compatible with terahertz experiments. The thermoplastic properties of these polymers make them suitable for use as lens, window, waveguide, or support materials in such applications as biological imaging or microfluidics necessitating a constant visual control not provided by conventional silicon- or teflon-based devices.  相似文献   

15.
Y. Zhang  W. Zhou  X. Wang  Y. Cui  W. Sun 《Strain》2008,44(5):380-385
Abstract: Terahertz (THz) technology is combined with digital holography for THz imaging. The characteristics of the propagation behaviour of the THz pulse in free space are investigated by using numerical simulations. The algorithm is based on the angular spectrum theory. The spatiotemporal coupling of the THz pulse during propagation results in a significant time‐dependent beam diameter and wave front. The two‐dimensional dynamic evolution of the THz pulse passing through an aperture is obtained. The diffraction is time‐dependent as the pulse travels through the object, which can be clearly observed in simulations. The simulation algorithm and result have been used to reconstruct the original object, with the spatiotemporal amplitude recorded by using a charge‐coupled device (CCD). The implementation of THz digital holography is presented and the corresponding experimental result given.  相似文献   

16.
Terahertz pulse propagation in the near field and the far field   总被引:1,自引:0,他引:1  
We present a detailed investigation of the propagation properties of beams of ultrashort terahertz (THz) pulses emitted from large-aperture (LA) antennas. The large area of the emitter is demonstrated to have substantial influence on the temporal pulse profile in both the near field and the far field. We perform a numerical analysis based on scalar and vectorial broadband diffraction theory and are able to distinguish between near-field and far-field contributions to the total THz signal. We find that the THz beam from a LA antenna propagates like a Gaussian beam and that the temporal profile of the THz pulse, measured in the near field, contains information about the temporal and spatial field distribution on the emitter surface, which is intrinsically connected to the carrier dynamics of the antenna substrate. As a result of pulse reshaping, focusing of the THz beam leads to a reduced relative pulse momentum, with implications in THz field-ionization experiments.  相似文献   

17.
Wilk R  Breitfeld F  Mikulics M  Koch M 《Applied optics》2008,47(16):3023-3026
We present a low cost terahertz (THz) spectrometer with coherent detection based on two simple and robust dipole antennas driven by two laser diodes. The spectrometer covers frequencies up to 1 THz, with a peak signal-to-noise ratio exceeding 40 dB for a lock-in integration time of 30 ms. We demonstrate that the thickness profile of a sample can be reconstructed from an acquired THz image.  相似文献   

18.
We report on the efficient coupling of terahertz (THz) waves into a dielectric waveguide by means of a diffraction grating engraved at the top of the waveguide. The waveguide is made of a 201-microm-thick high-resistivity silicon wafer. The transmission of the device, measured versus frequency by terahertz time-domain spectroscopy, shows usual m lines when a frequency component of the THz pulse spectrum satisfies the phase-matching condition and is coupled into the waveguide. The experimental data are well modeled with the differential electromagnetic method to compute the diffraction pattern of the grating device. The dispersion curve of the first four modes of propagation is determined from the frequency position of the m lines recorded for different angles of incidence of the THz beam. The waveguide exhibits a weak group velocity dispersion at high frequencies.  相似文献   

19.
采用太赫兹时域光谱装置测试SiC和Si3N4粉体在0.4~2.4 THz的透射光谱,研究SiC和Si3N4粉体对太赫兹波的吸收性能与其电导率的关系,分析SiC和Si3N4粉体对太赫兹波的散射特性。结果表明,SiC是一种半导体材料,其内部含有较多可以自由移动的载流子,对太赫兹波的吸收较强;Si3N4是绝缘性很好的材料,对太赫兹波的吸收很小;SiC和Si3N4粉体对太赫兹波的散射作用属于瑞利散射,但是测试波长比粉体粒径大得多,散射效果不明显。  相似文献   

20.
Abstract

A complementary Y-shaped chiral metamaterial (CYCMM) is proposed for the realization of giant optical activity and circular polarization with strong circular dichroism (CD) simultaneously for terahertz (THz) waves. It is demonstrated that the proposed CYCMM can achieve 90° linear polarization rotation around 2.13 THz and a giant CD effect at 2.38 THz through full-wave simulations. The mechanism of the giant CD effect and optical activity is illustrated by simulated surface current distribution. Due to strong optical activity and the CD effect, the proposed CYCMM is useful for the development of integrated terahertz spectroscopic and imaging devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号