首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes an Eulerian formulation for large deformation solid dynamics. In the present Eulerian approach, an advective equation is solved using the Stream‐Upwind/Petrov–Galerkin finite element method. The Eulerian finite element method is applied to path‐dependent solid analyses such as impact bar and ductile necking problems. These computational results using the Eulerian finite element method are compared with the results obtained from using the Lagrangian finite element method and an Eulerian formulation based on a finite difference method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
3.
For a given initial configuration of a multi-component geometry represented by voxel-based data on a fixed Cartesian mesh, a full Eulerian finite difference method facilitates solution of dynamic interaction problems between Newtonian fluid and hyperelastic material. The solid volume fraction, and the left Cauchy–Green deformation tensor are temporally updated on the Eulerian frame, respectively, to distinguish the fluid and solid phases, and to describe the solid deformation. The simulation method is applied to two- and three-dimensional motions of two biconcave neo-Hookean particles in a Poiseuille flow. Similar to the numerical study on the red blood cell motion in a circular pipe (Gong et al. in J Biomech Eng 131:074504, 2009), in which Skalak’s constitutive laws of the membrane are considered, the deformation, the relative position and orientation of a pair of particles are strongly dependent upon the initial configuration. The increase in the apparent viscosity is dependent upon the developed arrangement of the particles. The present Eulerian approach is demonstrated that it has the potential to be easily extended to larger system problems involving a large number of particles of complicated geometries.  相似文献   

4.
We present a hybrid variational‐collocation, immersed, and fully‐implicit formulation for fluid‐structure interaction (FSI) using unstructured T‐splines. In our immersed methodology, we define an Eulerian mesh on the whole computational domain and a Lagrangian mesh on the solid domain, which moves arbitrarily on top of the Eulerian mesh. Mathematically, the problem reduces to solving three equations, namely, the linear momentum balance, mass conservation, and a condition of kinematic compatibility between the Lagrangian displacement and the Eulerian velocity. We use a weighted residual approach for the linear momentum and mass conservation equations, but we discretize directly the strong form of the kinematic relation, deriving a hybrid variational‐collocation method. We use T‐splines for both the spatial discretization and the information transfer between the Eulerian mesh and the Lagrangian mesh. T‐splines offer us two main advantages against non‐uniform rational B‐splines: they can be locally refined and they are unstructured. The generalized‐α method is used for the time discretization. We validate our formulation with a common FSI benchmark problem achieving excellent agreement with the theoretical solution. An example involving a partially immersed solid is also solved. The numerical examples show how the use of T‐junctions and extraordinary nodes results in an accurate, efficient, and flexible method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Anisotropic diffusion is important to many different types of common materials and media. Based on structured Cartesian meshes, we develop a three-dimensional (3D) nonhomogeneous immersed finite-element (IFE) method for the interface problem of anisotropic diffusion, which is characterized by an anisotropic elliptic equation with discontinuous tensor coefficient and nonhomogeneous flux jump. We first construct the 3D linear IFE space for the anisotropic nonhomogeneous jump conditions. Then we present the IFE Galerkin method for the anisotropic elliptic equation. Since this method can efficiently solve interface problems on structured Cartesian meshes, it provides a promising tool to solve the physical models with complex geometries of different materials, hence can serve as an efficient field solver in a simulation on Cartesian meshes for related problems, such as the particle-in-cell simulation. Numerical examples are provided to demonstrate the features of the proposed method.  相似文献   

6.
An integrated framework and computational technology is described that addresses the issues to foster absolute scalability (A‐scalability) of the entire transient duration of the simulations of implicit non‐linear structural dynamics of large scale practical applications on a large number of parallel processors. Whereas the theoretical developments and parallel formulations were presented in Part 1, the implementation, validation and parallel performance assessments and results are presented here in Part 2 of the paper. Relatively simple numerical examples involving large deformation and elastic and elastoplastic non‐linear dynamic behaviour are first presented via the proposed framework for demonstrating the comparative accuracy of methods in comparison to available experimental results and/or results available in the literature. For practical geometrically complex meshes, the A‐scalability of non‐linear implicit dynamic computations is then illustrated by employing scalable optimal dissipative zero‐order displacement and velocity overshoot behaviour time operators which are a subset of the generalized framework in conjunction with numerically scalable spatial domain decomposition methods and scalable graph partitioning techniques. The constant run times of the entire simulation of ‘fixed‐memory‐use‐per‐processor’ scaling of complex finite element mesh geometries is demonstrated for large scale problems and large processor counts on at least 1024 processors. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The use of Cartesian meshes independent of the geometry has some advantages over the traditional meshes used in the finite element method. The main advantage is that their use together with an appropriate hierarchical data structure reduces the computational cost of the finite element analysis. This improvement is based on the substitution of the traditional mesh generation process by an optimized procedure for intersecting the Cartesian mesh with the boundary of the domain and the use efficient solvers based on the hierarchical data structure. One major difficulty associated to the use of Cartesian grids is the fact that the mesh nodes do not, in general, lie over the boundary of the domain, increasing the difficulty to impose Dirichlet boundary conditions. In this paper, Dirichlet boundary conditions are imposed by means of the Lagrange multipliers technique. A new functional has been added to the initial formulation of the problem that has the effect of stabilizing the problem. The technique here presented allows for a simple definition of the Lagrange multipliers field that even allow us to directly condense the degrees of freedom of the Lagrange multipliers at element level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A parallel multigrid (MG) method is developed to reduce the large computational costs involved by the finite element simulation of highly viscous fluid flows, especially those resulting from metal forming applications, which are characterized by using a mixed velocity/pressure implicit formulation, unstructured meshes of tetrahedra, and frequent remeshings. The developed MG method follows a hybrid approach where the different levels of nonnested meshes are geometrically constructed by mesh coarsening, while the linear systems of the intermediate levels result from the Galerkin algebraic approach. A linear O(N) convergence rate is expected (with N being the number of unknowns), while keeping software parallel efficiency. These objectives lead to selecting unusual MG smoothers (iterative solvers) for the upper grid levels and to developing parallel mesh coarsening algorithms along with parallel transfer operators between the different levels of partitioned meshes. Within the utilized PETSc library, the developed MG method is employed as a preconditioner for the usual conjugate residual algorithm because of the symmetric undefinite matrix of the system to solve. It shows a convergence rate close to optimal, an excellent parallel efficiency, and the ability to handle the complex forming problems encountered in 3‐dimensional hot forging, which involve large material deformations and frequent remeshings.  相似文献   

9.
In this paper, we present an adaptive level set method for motion of high codimensional objects (e.g., curves in three dimensions). This method uses only two (or a few fixed) levels of meshes. A uniform coarse mesh is defined over the whole computational domain. Any coarse mesh cell that contains the moving object is further divided into a uniform fine mesh. The coarse‐to‐fine ratios in the mesh refinement can be adjusted to achieve optimal efficiency. Refinement and coarsening (removing the fine mesh within a coarse grid cell) are performed dynamically during the evolution. In this adaptive method, the computation is localized mostly near the moving objects; thus, the computational cost is significantly reduced compared with the uniform mesh over the whole domain with the same resolution. In this method, the level set equations can be solved on these uniform meshes of different levels directly using standard high‐order numerical methods. This method is examined by numerical examples of moving curves and applications to dislocation dynamics simulations. This two‐level adaptive method also provides a basis for using locally varying time stepping to further reduce the computational cost. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Finite element simulations of impact problems on highly compressible media often lead to poor accuracy due to mesh distortion. In explicit dynamics, poorly shaped elements also reduce the stable time step. In order to have satisfactory results and an acceptable computational time, the structure has to be remeshed regularly. A remeshing process can be a burdensome task, especially for 3D problems with complex geometries. In explicit methods, remeshing can also be time consuming compared to the time required for the computation. In this article, we propose to use the extended finite element method (X-FEM) to simplify the remeshing work. This simplification relies on the fact that the X-FEM allows to remesh with meshes that do not match the shape of the deformed structure. A unique simple structured mesh can be used whenever remeshing is needed. A specific algorithm is designed in order to ensure data transfer between successive meshes in the X-FEM context. Several examples demonstrate the efficiency of the proposed method. The final part of the article is dedicated to the treatment of impact problems. It is shown that the use of the penalty method with X-FEM in explicit dynamics leads to a decrease of the stable time step. We propose a specific mass scaling strategy to overcome this issue.  相似文献   

11.
Boundary‐layer meshes are important for numerical simulations in computational fluid dynamics, including computational biofluid dynamics of air flow in lungs and blood flow in hearts. Generating boundary‐layer meshes is challenging for complex biological geometries. In this paper, we propose a novel technique for generating prismatic boundary‐layer meshes for such complex geometries. Our method computes a feature size of the geometry, adapts the surface mesh based on the feature size, and then generates the prismatic layers by propagating the triangulated surface using the face‐offsetting method. We derive a new variational method to optimize the prismatic layers to improve the triangle shapes and edge orthogonality of the prismatic elements and also introduce simple and effective measures to guarantee the validity of the mesh. Coupled with a high‐quality tetrahedral mesh generator for the interior of the domain, our method generates high‐quality hybrid meshes for accurate and efficient numerical simulations. We present comparative study to demonstrate the robustness and quality of our method for complex biomedical geometries. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In the study of concrete fractures, split‐tension specimens, such as cylinders, cubes and diagonal cubes, are frequently preferred to beams. However, experimental investigations on concrete reveal that for the same specimen geometry, the nominal strength of specimen decreases with increasing specimen size. This phenomenon is named as the size effect in the fracture mechanics of concrete. Although nominal strength is also highly affected by the width of the distributed load in the split‐tension cylinder and cube specimens, this effect can be negligible within the practical range of the load‐distributed width in the diagonal cubes. However, the number of theoretical and experimental studies with diagonal split‐tension specimens is limited. Besides, a size effect formula for estimating the split‐tensile strength of the diagonal cube specimens has not been proposed. In this study, nine series of cube and diagonal cube specimens, with three different sizes but similar geometries, were tested under different load‐distributed widths. The ultimate loads obtained from the test results are analysed by the modified size effect law. Subsequently, prediction formulas are proposed, and they are compared with historical test data from the split‐cylinder specimens.  相似文献   

13.
An explicit‐dynamics spatially discontinuous Galerkin (DG) formulation for non‐linear solid dynamics is proposed and implemented for parallel computation. DG methods have particular appeal in problems involving complex material response, e.g. non‐local behavior and failure, as, even in the presence of discontinuities, they provide a rigorous means of ensuring both consistency and stability. In the proposed method, these are guaranteed: the former by the use of average numerical fluxes and the latter by the introduction of appropriate quadratic terms in the weak formulation. The semi‐discrete system of ordinary differential equations is integrated in time using a conventional second‐order central‐difference explicit scheme. A stability criterion for the time integration algorithm, accounting for the influence of the DG discretization stability, is derived for the equivalent linearized system. This approach naturally lends itself to efficient parallel implementation. The resulting DG computational framework is implemented in three dimensions via specialized interface elements. The versatility, robustness and scalability of the overall computational approach are all demonstrated in problems involving stress‐wave propagation and large plastic deformations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we present novel techniques of using quadratic Bézier triangular and tetrahedral elements for elastostatic and implicit/explicit elastodynamic simulations involving nearly incompressible linear elastic materials. A simple linear mapping is proposed for developing finite element meshes with quadratic Bézier triangular/tetrahedral elements from the corresponding quadratic Lagrange elements that can be easily generated using the existing mesh generators. Numerical issues arising in the case of nearly incompressible materials are addressed using the consistent B -bar formulation, thus reducing the finite element formulation to one consisting only of displacements. The higher-order spatial discretization and the nonnegative nature of Bernstein polynomials are shown to yield significant computational benefits. The optimal spatial convergence of the B -bar formulation for the quadratic triangular and tetrahedral elements is demonstrated by computing error norms in displacement and stresses. The applicability and computational efficiency of the proposed elements for elastodynamic simulations are demonstrated by studying several numerical examples involving real-world geometries with complex features. Numerical results obtained with the standard linear triangular and tetrahedral elements are also presented for comparison.  相似文献   

15.
16.
A vertex‐based finite volume (FV) method is presented for the computational solution of quasi‐static solid mechanics problems involving material non‐linearity and infinitesimal strains. The problems are analysed numerically with fully unstructured meshes that consist of a variety of two‐ and three‐dimensional element types. A detailed comparison between the vertex‐based FV and the standard Galerkin FE methods is provided with regard to discretization, solution accuracy and computational efficiency. For some problem classes a direct equivalence of the two methods is demonstrated, both theoretically and numerically. However, for other problems some interesting advantages and disadvantages of the FV formulation over the Galerkin FE method are highlighted. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
This study explores the performance and scaling of a GMRES Krylov method employed as a smoother for an algebraic multigrid preconditioned Newton-Krylov solution approach applied to a fully implicit variational multiscale finite element resistive magnetohydrodynamics formulation. In this context, a Newton iteration is used for the nonlinear system and a parallel MPI-based Krylov method is employed for the linear subsystems. The efficiency of this approach is critically dependent on the scalability and performance of the parallel algebraic multigrid preconditioner for the linear solutions and the performance of the multigrid smoothers play a critical role. Krylov multigrid smoothers are considered in an attempt to reduce the time and memory requirements of existing robust smoothers based on additive Schwarz domain decomposition with incomplete LU factorization solves on each subdomain. Three time-dependent resistive magnetohydrodynamics test cases are considered to evaluate the method. Compared with a domain decomposition incomplete LU smoother, the GMRES smoother can reduce the solve time due to a significant decrease in the preconditioner setup time and often a reduction in outer Krylov solver iterations, and requires less memory, typically 35% less memory.  相似文献   

18.
We describe the parallel implementation of a multigrid method for unstructured finite element discretizations of solid mechanics problems. We focus on a distributed memory programming model and use the MPI library to perform the required interprocessor communications. We present an algebraic framework for our parallel computations, and describe an object‐based programming methodology using Fortran90. The performance of the implementation is measured by solving both fixed‐ and scaled‐size problems on three different parallel computers (an SGI Origin2000, an IBM SP2 and a Cray T3E). The code performs well in terms of speedup, parallel efficiency and scalability. However, the floating point performance is considerably below the peak values attributed to these machines. Lazy processors are documented on the Origin that produce reduced performance statistics. The solution of two problems on an SGI Origin2000, an IBM PowerPC SMP and a Linux cluster demonstrate that the algorithm performs well when applied to the unstructured meshes required for practical engineering analysis. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes a method for the interpretation of test results which makes it possible to estimate concrete cube strength from cores of various diameters with suitable confidence levels. To this end, 1,270 results of compression tests carried out on cubes with 150 mm sides, on typical small and micro-cores (70, 45 and 28 mm in diameter, respectively), have been elaborated with the aid of statistical methods, which can also be used for different types of test. The laws of correlation between cube strength and the strength values obtained from the different diameter cores are determined and discussed. The relationship expressing the lower confidence limits for future individual observations are developed, compared with one another in relation to the influence of core diameters, and proposed for thein situ estimate of cube strength.  相似文献   

20.
A method is proposed for the assessment of characteristic cube strength, fck, based on tests performed on 28 mm diameter microcores, small 45 mm diameter cores, and 70 mm diameter cores. In particular, on the basis of the tests performed on the specimens (1270 between cubes and cores of the three diameters being considered, manufactured from 16 concrete types), relationships are defined which make it possible to estimate mean cube strength, $\bar f_c$ , with, a desired confidence level (1?α)%, starting from a mean core strength, $\bar f_{28} ,\bar f_{45,} \bar f_{70} $ . Subsequently, given a number of microcores, n28, n45, n70, subject to compressive tests the proposed method makes it possible to determine the number of cubes nc necessary to evaluate the mean cube strength with the same confidence level, and characteristic strength with a good approximation. Finally, having worked out the one-side tolerance factor, k, fck is evaluated with the aid of the estimated value of $\bar f_c$ , the calculated value of k, and an estimate of the mean standard deviation on cubes, s c , as determined from the core tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号