首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
该文根据von Mises强度准则的畸变比能本质,计算单元畸变比能替代应力约束;依照应力全局化策略,定义结构畸变比能约束概念,求解应力约束下重量最小的连续体结构拓扑优化问题,急剧地减少了应力约束。构造许用应力和结构最大应力的比值含参数幂函数,对约束限进行动态修正。基于ICM(Independent Continuous and Mapping,独立、连续、映射)方法,采用指数型快滤函数建立了结构在畸变比能约束下的结构拓扑优化模型,并选取精确映射下的序列二次规划进行求解。数值算例表明:采用修正的结构畸变比能的应力全局化策略,对于结构拓扑优化问题的求解是有用和高效的。该文提出的方法对解决工况间存在病态载荷的问题也是有益的。  相似文献   

2.
This study aims to develop efficient numerical optimization methods for finding the optimal topology of nonlinear structures under dynamic loads. The numerical models are developed using the bidirectional evolutionary structural optimization method for stiffness maximization problems with mass constraints. The mathematical formulation of topology optimization approach is developed based on the element virtual strain energy as the design variable and minimization of compliance as the objective function. The suitability of the proposed method for topology optimization of nonlinear structures is demonstrated through a series of two- and three-dimensional benchmark designs. Several issues relating to the nonlinear structures subjected to dynamic loads such as material, geometric, and contact nonlinearities are addressed in the examples. It is shown that the proposed approach generates more reliable designs for nonlinear structures.  相似文献   

3.
This paper extends current concepts of topology optimization to the design of structures made of nonlinear microheterogeneous materials. The objective is to maximize the macroscopic structural stiffness for a prescribed material volume usage while accounting for the nonlinearity and the microstructure of the material. The resulting design problem considers two scales: the macroscopic scale at which the optimization is performed and the microscopic scale at which the material heterogeneities and the nonlinearities are observed. The topology optimization at the macroscopic scale is performed by means of the bi‐directional evolutionary structural optimization method. The solution of the macroscopic boundary value problem requires as inputs the effective constitutive response with full consideration of the microstructure. While computational homogenization methods such as the FE2 method could be used to solve the nonlinear multiscale problem, the associated numerical expense (CPU time and memory) is highly unacceptable. In order to regain the computational feasibility of the computational scale transition, a recent model reduction technique of the authors is employed: the potential‐based reduced basis model order reduction with graphics processing unit acceleration. Numerical examples show the efficiency of the resulting nonlinear two‐scale designs. The impact of different load amplitudes on the design is examined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
应力约束全局化处理的连续体结构ICM拓扑优化方法   总被引:4,自引:0,他引:4  
由于应力约束按单元计,加之多工况,使得连续体结构拓扑优化由于约束数目太多,导致应力敏度分析计算量太大而无法接受。基于第四强度理论提出了应力约束条件全局化处理的方法,化为全局替代约束——总应变能约束,用ICM方法对总应变能约束条件下的连续体结构拓扑优化进行建模及求解,其过程分为三步:第一步选择最大应变能对应的工况,在给定重量下求出最小结构总应变能;第二步提出一个数值经验公式,借助第一步的结果,计算出各工况下的许用总应变能;第三步以第二步计算出来的各工况的许用总应变能作为约束,以重量为目标建立模型并求解。顺便指出,第二步的处理方法可以处理载荷相差特别大的情况,即病态载荷情况。数值算例表明:全局性应力约束可以更好地得到传力路径,对于处理多工况问题具有优势。  相似文献   

5.
林哲祺  王炫盛 《工程力学》2015,32(1):198-204
提出了一种基于相场函数的压电俘能器拓扑优化设计方法,通过设计俘能器的材料分布提高其工作效率。其中,利用相场函数描述俘能器上压电材料与基体材料(环氧基树脂)的分布,并建立以相场函数节点值为设计变量,以特定频率激励下俘能器的能量转换因子最大化为目标的拓扑优化模型。该文给出了目标函数和约束函数的灵敏度分析,并采用移动渐近线方法对优化问题进行求解。数值算例验证了所提出的数学模型与设计方法的可行性和有效性。  相似文献   

6.
The topology optimization using isolines/isosurfaces and extended finite element method (Iso-XFEM) is an evolutionary optimization method developed in previous studies to enable the generation of high-resolution topology optimized designs suitable for additive manufacture. Conventional approaches for topology optimization require additional post-processing after optimization to generate a manufacturable topology with clearly defined smooth boundaries. Iso-XFEM aims to eliminate this time-consuming post-processing stage by defining the boundaries using isovalues of a structural performance criterion and an extended finite element method (XFEM) scheme. In this article, the Iso-XFEM method is further developed to enable the topology optimization of geometrically nonlinear structures undergoing large deformations. This is achieved by implementing a total Lagrangian finite element formulation and defining a structural performance criterion appropriate for the objective function of the optimization problem. The Iso-XFEM solutions for geometrically nonlinear test cases implementing linear and nonlinear modelling are compared, and the suitability of nonlinear modelling for the topology optimization of geometrically nonlinear structures is investigated.  相似文献   

7.
The incremental problem for quasistatic elastoplastic analysis with the von?Mises yield criterion is discussed within the framework of the second-order cone programming (SOCP). We show that the associated flow rule under the von?Mises yield criterion with the linear isotropic/kinematic hardening is equivalently rewritten as a second-order cone complementarity problem. The minimization problems of the potential energy and the complementary energy for incremental analysis are then formulated as the primal-dual pair of SOCP problems, which can be solved with a primal-dual interior-point method. To enhance numerical performance of tracing an equilibrium path, we propose a warm-start strategy for a primal-dual interior-point method based on the primal-dual penalty method. In this warm-start strategy, we solve a penalized SOCP problem to find the equilibrium solution at the current loading step. An advanced initial point for solving this penalized SOCP problem is defined by using information of the solution at the previous loading step.  相似文献   

8.
为了满足制造工艺和静强度要求,提出一种综合考虑最小尺寸控制和应力约束的柔顺机构混合约束拓扑优化设计方法。采用改进的固体各向同性材料插值模型描述材料分布,利用多相映射方法同时控制实相和空相材料结构的最小尺寸,采用最大近似函数P范数求解机构的最大应力,以机构的输出位移最大化作为目标函数,综合考虑最小特征尺寸控制和应力约束建立柔顺机构混合约束拓扑优化数学模型,利用移动渐近算法求解柔顺机构混合约束拓扑优化问题。数值算例结果表明,混合约束拓扑优化获得的柔顺机构能够同时满足最小尺寸制造约束和静强度要求,机构的von Mises等效应力分布更加均匀。  相似文献   

9.
为了满足制造工艺和静强度要求,提出一种综合考虑最小尺寸控制和应力约束的柔顺机构混合约束拓扑优化设计方法。采用改进的固体各向同性材料插值模型描述材料分布,利用多相映射方法同时控制实相和空相材料结构的最小尺寸,采用最大近似函数P范数求解机构的最大应力,以机构的输出位移最大化作为目标函数,综合考虑最小特征尺寸控制和应力约束建立柔顺机构混合约束拓扑优化数学模型,利用移动渐近算法求解柔顺机构混合约束拓扑优化问题。数值算例结果表明,混合约束拓扑优化获得的柔顺机构能够同时满足最小尺寸制造约束和静强度要求,机构的von Mises等效应力分布更加均匀。  相似文献   

10.
A multi‐material topology optimization scheme is presented. The formulation includes an arbitrary number of phases with different mechanical properties. To ensure that the sum of the volume fractions is unity and in order to avoid negative phase fractions, an obstacle potential function, which introduces infinity penalty for negative densities, is utilized. The problem is formulated for nonlinear deformations, and the objective of the optimization is the end displacement. The boundary value problems associated with the optimization problem and the equilibrium equation are solved using the finite element method. To illustrate the possibilities of the method, it is applied to a simple boundary value problem where optimal designs using multiple phases are considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
研究了预应力平面实体钢结构拓扑优化设计问题。建立了以索力值和结构拓扑为设计变量,以结构储存应变能为约束条件,以结构重量最小为目标函数的数学优化模型。在求解方法上,首先以结构储存应变能最小(刚度最大)确定施加在结构上的索力值,然后采用渐进结构优化法(ESO方法)删除低应变能的单元实现结构的拓扑优化并减轻结构重量。算例结果与相应体系受力性能的结论相吻合,表明本文所提出的优化方法是可行的。  相似文献   

12.
基于区间法的发动机曲轴不确定性优化研究   总被引:1,自引:0,他引:1  
该文基于非线性区间数规划方法和区间分析方法,针对某型发动机曲轴的不确定性优化问题进行了研究。载荷中的不确定参数采用区间描述,极限工况下的最大等效应力作为目标函数且通过有限元方法求解。非线性区间数规划方法用以处理不确定目标函数,区间分析方法用以快速求解目标函数在每一个设计矢量下的区间,隔代映射遗传算法作为优化求解器。应用算例说明了该文算法的有效性。  相似文献   

13.
This work is directed toward optimizing concept designs of structures featuring inelastic material behaviours by using topology optimization. In the proposed framework, alternative structural designs are described with the aid of spatial distributions of volume fraction design variables throughout a prescribed design domain. Since two or more materials are permitted to simultaneously occupy local regions of the design domain, small-strain integration algorithms for general two-material mixtures of solids are developed for the Voigt (isostrain) and Reuss (isostress) assumptions, and hybrid combinations thereof. Structural topology optimization problems involving non-linear material behaviours are formulated and algorithms for incremental topology design sensitivity analysis (DSA) of energy type functionals are presented. The consistency between the structural topology design formulation and the developed sensitivity analysis algorithms is established on three small structural topology problems separately involving linear elastic materials, elastoplastic materials, and viscoelastic materials. The good performance of the proposed framework is demonstrated by solving two topology optimization problems to maximize the limit strength of elastoplastic structures. It is demonstrated through the second example that structures optimized for maximal strength can be significantly different than those optimized for minimal elastic compliance. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
讨论了附加阻尼层的薄板结构在非平稳随机力作用下以减振为目标的阻尼材料层的拓扑优化问题。建立了以阻尼材料的相对密度为设计变量,以结构非平稳响应位移方差最小化为目标和阻尼材料用量为约束条件的拓扑优化模型。由于结构受到非平稳随机激励作用,其随机响应可以采用时域显式法快速求解;随机响应方差对设计变量的灵敏度采用了基于伴随变量法的时域显式法进行分析,并采用优化准则法求解优化问题。数值算例验证了所提方法在非平稳随机激励作用下进行动力拓扑优化减振的可行性与有效性。  相似文献   

15.
讨论了敷设阻尼材料的薄板结构考虑瞬态响应时阻尼材料层的最优布局问题。基于SIMP方法构造人工阻尼材料惩罚模型和结构拓扑优化模型,以阻尼材料的相对密度作为设计变量,在给定阻尼材料用量的条件下,最小化结构瞬态位移响应的时间积分。由于结构整体呈现非比例阻尼特性,采用逐步积分法对结构的振动方程进行求解。通过伴随变量法得到目标函数对设计变量的灵敏度表达式,在此基础上采用基于梯度的移动渐近线方法求解。数值算例验证了优化模型与算法的合理性和有效性。  相似文献   

16.
This paper presents a finite element topology optimization framework for the design of two‐phase structural systems considering contact and cohesion phenomena along the interface. The geometry of the material interface is described by an explicit level set method, and the structural response is predicted by the extended finite element method. In this work, the interface condition is described by a bilinear cohesive zone model on the basis of the traction‐separation constitutive relation. The non‐penetration condition in the presence of compressive interface forces is enforced by a stabilized Lagrange multiplier method. The mechanical model assumes a linear elastic isotropic material, infinitesimal strain theory, and a quasi‐static response. The optimization problem is solved by a nonlinear programming method, and the design sensitivities are computed by the adjoint method. The performance of the presented method is evaluated by 2D and 3D numerical examples. The results obtained from topology optimization reveal distinct design characteristics for the various interface phenomena considered. In addition, 3D examples demonstrate optimal geometries that cannot be fully captured by reduced dimensionality. The optimization framework presented is limited to two‐phase structural systems where the material interface is coincident in the undeformed configuration, and to structural responses that remain valid considering small strain kinematics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
将稳定性问题引入传统变密度法中,可实现包含稳定性约束的平面模型结构拓扑优化。以单元相对密度为设计变量,结构柔度最小为目标函数,结构体积和失稳载荷因子为约束条件建立优化问题数学模型,提出了一种考虑结构稳定性的变密度拓扑优化方法。通过分析结构柔度、体积、失稳载荷因子对设计变量的灵敏度,并基于拉格朗日乘子法和Kuhn-Tucker条件,推导了优化问题的迭代准则。同时,利用基于约束条件的泰勒展开式求解优化准则中的拉格朗日乘子。通过推导平面四节点四边形单元几何刚度矩阵的显式表达式,得到了优化准则中的几何应变能。最后,通过算例对提出的方法进行了验证,并与不考虑稳定性的传统变密度拓扑优化方法进行对比,结果表明该方法能显著提高拓扑优化结果的稳定性。研究结果对细长受压结构的优化设计有重要指导意义,对结构的稳定性设计有一定参考价值。  相似文献   

18.
A finite element solution procedure is presented to predict the load-displacement history up to ultimate fracture failure for a structural system. Incremental plasticity theory for the von Mises yield criterion and isotropic strain hardening are used to march along the uniaxial stress-strain curve of the material up to fracture. When an element fractures its strain energy is distributed into the unfractured elements using an element nodal release method. If another element fractures during this redistribution process, then unstable crack growth is said to occur, and the total load at this stage is termed the ultimate fracture failure load of the structural system. The analysis steps to automate the solution procedure are described. Numerical results obtained for a center pre-cracked panel tension specimen are reported and compared with experimental results available in the literature.  相似文献   

19.
This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.  相似文献   

20.
通过浮动参考区间法分析具有多约束连续体结构拓扑优化问题。浮动区间法是指将结构的拓扑优化过程看作是骨骼重建过程,通过引入参考应变区间,将结构中所有各点处主应变绝对值落入参考应变区间作为重建平衡状态,当结构处于重建平衡状态时获得结构的最优材料分布。为了使得优化结果满足给定的性态约束,参考应变区间在优化迭代过程中须不断变化。讨论了几种常见性态约束对结构性能的要求。给出了结构具有多约束时优化问题的算法。数值算例表明该方法可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号