首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microstructural and mechanical properties of laser welded sheets of magnesium AZ31‐HP with and without filler wires This paper describes Nd:YAG laser beam welding experiments carried out on rolled 2.5 mm thick magnesium sheet AZ31‐HP. For the butt welds in flat position, filler wires AZ31X and AZ61A‐F were used, diameter 1.2 mm. The microstructure and mechanical properties of the different laser beam welded joints were examined and compared with one another. The obtained results show that the laser beam welding of AZ31‐HP sheet is possible without hot crack formation, both without and with filler wires. The determined tensile strength, ductility, fracture toughness and microhardness of laser beam welded joints without filler wire were not effected by AZ31X nor AZ61A‐F. By use of these filler wires loss of zinc was minimized and the shape of weldments was optimized. The values of fracture strength, yield strength and microhardness of the joints and base material are quite similar. It is found that the ductility of the joints is lower than the base materials due to the heterogeneous microstructure of the fusion zones and geometrical notches of the weld seams. Both, weld and base material of AZ31‐HP, showed stable crack propagation. Furthermore, for base material slightly lower fracture toughness values CTOD than for the joints were determined.  相似文献   

2.
The effect of mechanical mismatching (ratio between the yield strength of base and weld metal) on the toughness of welded joints at different temperatures was analysed and the ductile-to-brittle transition curves of these welded joints were experimentally obtained. The filler metal of the joints was always the same, varying the base metal and the width of the welded zone. Two base metals were selected, one with a higher strength than the filler metal (undermatched joint) and the other with a lower strength than the filler metal (overmatched joint). In addition, the joints were made using two different weld widths, 20 and 10 mm.The fracture behaviour of the joints were determined at different temperatures using SE(B) specimens provided with short cracks (a/W = 0.22). Besides, long crack specimens (a/W = 0.5) were also used for comparison. In the case of overmatched joints, the J-values for ductile crack growth are larger than for the undermatched joints. In addition, the ductile-to-brittle transition curve is displaced towards lower-temperatures and higher-toughness values and the toughness for cleavage fracture is also larger for overmatching than for undermatching. All these effects are more significant as the weld width decreases and have been explained in terms of constraint modifications.  相似文献   

3.
A.M. Irisarri  J.L. Barreda 《Vacuum》2009,84(3):393-399
The use of different procedures for electron beam welding of 17 mm thick Ti-6Al-4V plate and the difficulties found in this process are analysed. When this alloy was welded autogeneously the presence of significant amounts of α martensite was observed, recommending looking for another solution. In the early trials a V joint design was used but distortions and defects were detected in the welds when multi-pass procedures were considered. Consequently, for the remaining weldments K or I joint configurations were selected. Initially, Ti-6Al-4V wire was preferred in order to match mechanical properties with base material but no significant improvement was found leading to consideration of using a less alloyed filler metal. Different commercially pure titanium filler metals have been employed to optimise the performance of the fusion zone of electron beam weldments. In a second paper [1] the influence of the welding procedure on the mechanical properties of the various joints will be discussed.  相似文献   

4.
The effect of heat input on martensite formation and impact properties of gas metal arc welded modified ferritic stainless steel (409M) sheets (as received) with thickness of 4 mm was described in detail in this work. The welded joints were prepared under three heat input conditions, i.e. 0.4, 0.5 and 0.6 kJ/mm using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5% CO2. The welded joints were evaluated by microstructure and charpy impact toughness. The dependence of weld metal microstructure on heat input and filler wires were determined by dilution calculation, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM) and transmission electron microscopy (TEM). It was observed that the microstructure as well as impact property of weld metal was significantly affected by the heat input and filler wire. Weld metals prepared by high heat input exhibited higher amount of martensite laths and toughness compared with those prepared by medium and low heat inputs, which was true for both the filler wires. Furthermore, 308L weld metals in general provided higher amount of martensite laths and toughness than 316L weld metals.  相似文献   

5.
The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the joints fabricated by austenitic stainless steel, ferritic stainless steel and duplex stainless steel filler metals were evaluated and the results were reported. From this investigation, it is found that the joints fabricated by duplex stainless steel filler metal showed higher tensile strength and hardness compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Joints fabricated by austenitic stainless steel filler metal exhibited higher ductility and impact toughness compared with the joints fabricated by ferritic stainless steel and duplex stainless steel filler metals.  相似文献   

6.
Influence of heat input on the microstructure and mechanical properties of gas tungsten arc welded 304 stainless steel (SS) joints was studied. Three heat input combinations designated as low heat (2.563 kJ/mm), medium heat (2.784 kJ/mm) and high heat (3.017 kJ/mm) were selected from the operating window of the gas tungsten arc welding process (GTAW) and weld joints made using these combinations were subjected to microstructural evaluations and tensile testing so as to analyze the effect of thermal arc energy on the microstructure and mechanical properties of these joints. The results of this investigation indicate that the joints made using low heat input exhibited higher ultimate tensile strength (UTS) than those welded with medium and high heat input. Significant grain coarsening was observed in the heat affected zone (HAZ) of all the joints and it was found that the extent of grain coarsening in the heat affected zone increased with increase in the heat input. For the joints investigated in this study it was also found that average dendrite length and inter-dendritic spacing in the weld zone increases with increase in the heat input which is the main reason for the observable changes in the tensile properties of the weld joints welded with different arc energy inputs.  相似文献   

7.
Several concepts are used for the fatigue design of welded joints. In this paper investigations are presented, which were carried out in a joint project between five research institutes [1]. The aim is to investigate currently applied fatigue concepts with respect to their limitations, compatibility and reliability, in order to improve the accuracy of lifetime estimation and to simplify the choice of the optimum fatigue concept. Here, the results of the investigation of welded joints in rotating universal joint shafts are shown [2]. In the critical weld, a structural steel and a quenched and tempered steel are joined. In practice, stresses result from rotating bending, torsion and also residual stresses are sometimes present. Several welding techniques, MAG, TIG and laser welding, and two seam geometries were investigated with regard to their influence on fatigue strength. Experiments were conducted with welded tube specimens representative of the actual component application and with derived flat specimens as detail specimens. The welded sheet thickness was 5.5 mm. Fatigue strength was investigated from 104 to 107 numbers of cycles. In numerical analyses, nominal stress, structural hot spot stress and elastic notch stress with reference radii of 0.3 mm and 0.05 mm were calculated. In the comparison of the concepts, their respective advantages and disadvantages have been demonstrated. A comparison of the results with the IIW recommendation for fatigue design of welded joints and components [3] has been carried out and improvements have been suggested.  相似文献   

8.
Among modern fatigue design concepts for welded structures, the linear-elastic notch stress concept gains increasing industrial acceptance. There are two variants of this concept, one for thick walled (t ? 5 mm) welded joints with the reference radius rref = 1.00 mm, which is already included in the fatigue design recommendations of the IIW and applied for the assessment of big welded structures, and one for thin walled (t < 5 mm) welded joints with the reference radius rref = 0.05 mm, which is more and more used in the automotive industry.The concept with rref = 1.00 mm is based on the micro-support theory of Neuber with the fictitious radius rref = 1.00 mm, derived by Radaj. The background of the concept with rref = 0.05 mm is the relationship between the stress-intensity factor and the notch stress according to Creager and Paris as well as Irvin’s theory of crack blunting. Besides these two theories, the definition of both of these radii has also an experimental background; they are observed in many welded joints.In the present paper, first the background and then different applications of both concept variants are described: the application of the reference radius of rref = 1.00 mm for MAG-welded offshore K-nodes (t = 30 mm) and sandwich panels for ship decks (t = 5 mm), and the application of rref = 0.05 mm for spot-welded automotive doors (t = 1 mm) and MAG-welded automotive trailing links (t = 3-4 mm). The sandwich panels were evaluated additionally with rref = 0.05 mm. Calculations and experimental results are compared and the reliability of the notch stress concept variants underlined. Additionally, recommendations for the slope of design lines distinguishing between thin and thick dimensions are given, i.e. k = 3.0 and 5.0 (normal stress, shear stress) for thick and stiff structures, k = 5.0 and 7.0 for thin and flexible structures.  相似文献   

9.
Laser beam welding is considered to be a suitable joining process for high speed, low distortion, and high quality fabrication of aircraft structures manufactured from aluminum alloys, which are mainly preferred due to their favourable properties, such as high strength to weight ratio, ease of forming and high thermal and electrical conductivity. However, the laser beam welding of 6000 series aluminum alloys may exhibit a tendency to solidification cracking, and porosity may be a major problem unless appropriate welding parameters and filler metal are employed.In this study, the microstructural aspects and mechanical properties of laser beam welded new generation aluminum alloy, namely 6056, developed especially for aircraft structures, are investigated. A continuous wave CO2 laser using AlSi12 filler wire was employed. A detailed microstructural examination of the weld region was carried out by Scanning Electron Microscopy (SEM). Standard tensile and microflat tensile specimens extracted from the welded plates were tested at room temperature for the determination of general and local mechanical properties of the welded joints. Extensive microhardness measurements were also conducted. Crack growth mechanisms of the joints produced were also determined by conducting fatigue tests under various stress ratios (i.e., 0.1 ≤ R ≤ 0.7).  相似文献   

10.
Different approaches - the nominal stress, structural hot spot stress and notch stress approach - to analyse the fatigue strength of welded structures made from wrought aluminium alloys were studied. Experimental and numerical investigation was carried out for this purpose on detail specimens and components. The results shown here were generated during the research project “Extrusion profile and sheet metal structures of wrought aluminium alloys in vehicle construction” [1].The studies show that due to the existing guidelines, welds on structures made from aluminium alloys are sometimes designed very conservatively. It is possible to optimise and reliably design welded joints of thin sheet structures by applying the notch stress approach using the reference radius rref = 0.05 mm and the reference SN curves derived here.  相似文献   

11.
目的 对Q960E超高强钢的焊接工艺进行研究以获得高强高韧的焊接接头。方法 选择超高强钢Q960E作为母材、FK1000ER120S–G焊丝作为填充材料进行MAG焊,采用改变焊接电流的方式来研究焊接热输入对焊接接头组织和性能的影响。结果 当焊接电流为155~230 A时,均获得了全焊透无明显缺陷的焊缝。随着焊接热输入的增大,焊接接头中各亚区宽度增大,其中焊缝区变化最为显著,在最小热输入条件下焊缝宽度为3.98 mm,在最大热输入条件下焊缝宽度增至5.53 mm。对焊接接头进行组织分析发现,焊缝组织主要为针状铁素体和板条马氏体;完全相变区组织主要为板条马氏体;未完全相变区组织主要为回火马氏体和部分重结晶形成的马氏体。硬度测试表明,在热影响区的回火区发生了软化现象,最低硬度仅为290HV;在完全相变区发生了硬化现象,硬度最大值可达500HV。在不同热输入条件下,焊接接头各亚区硬度变化趋势一致,焊接接头抗拉强度为995~1 076 MPa,拉伸试验均断裂在热影响区,断后伸长率为9.33%~10.21%,断裂时存在颈缩现象,为韧性断裂。随着热输入的增加,粗晶区马氏体板条束宽度增大,未完全相变区马氏体含量上升。结论 在所选焊接工艺窗口内焊接均能获得高强高韧的焊接接头。  相似文献   

12.
To perform a long lasting, crack-free repair welding on ultrahigh strength steels, the filler metal must be chosen and applied properly. Avoiding several short-term repairs or replacements, the repaired weldment should reveal comparative characteristics such as wear resistance, toughness and hardness to base metal. In the present study, a novel functionally graded material have been introduced to obtain enhanced wear resistance and hardness at surface as well as improved fracture toughness at fusion line of repaired weldments. A comparative study of wear resistance of repaired weld metals has been carried out by pin-on-disk apparatus at 5 N normal load and 0.14 ms−1 sliding speed. Fracture toughness of weld metal was also evaluated by charpy absorbed fracture energy tests and scanning electron microscopy fractograghs. The results show that by employing functionally graded layers, toughness was enhanced significantly while retaining the surface wear resistance.  相似文献   

13.
It's difficult to weld high strength thick plate since the groove is huge when using traditional arc welding, and the weld tends to be softened and large deformation could occur after multi-layer welding. All of these can affect the industrial application of high strength thick plate wielding. In this case, developing advanced welding technology and welding material is necessary to optimize the microstructure and performance of the welds. Fiber laser has many advantages such as good monochrome and high quality laser beam. In order to decrease the heat damage to the base metal from the welding heat source, low heat input is employed for welding thick plate. Fiber laser is applied in the welding of 20 mm thick Al–Zn–Mg–Cu alloy with super narrow gap filler wire. The microstructure comparison of Al–Mg–Mn alloy and Al–Mg–Mn–Zr–Er alloy welded joints reveals that a huge amount of fine equiaxed grains is formed in the weld zone of Zr and Er micro-alloying Al–Mg–Mn alloy welding wire and a great number of precipitation strengthening phases are precipitated in the weld zone after the heat treatment of welded joints in the entirety.  相似文献   

14.
In this study, the friction stir butt welding of 2-mm-thick high nitrogen-containing stainless steel (HNS; Ni-free austenitic stainless steel containing 1 mass% nitrogen) plates was performed using a load-controlled friction stir welding (FSW) machine with a Si3N4-based tool at various welding speeds, i.e., 50 mm/min, 100 mm/min, 200 mm/min and 300 mm/min, and a constant tool rotating speed of 400 rpm. To determine the optimum welding conditions to create reliable HNS FSW joints, the effect of the heat input on the mechanical properties of the HNS FSW joints was studied. The mechanical properties were evaluated by the Vickers hardness test and the tensile strength test. Full-penetrated and defect-free butt welded joints were successfully produced, under all the applied welding conditions. The stir zones consisted of very fine grained structures and showed an increase in the Vickers hardness. These joints also showed a higher tensile strength and yield strength than the base metal. In particular, the FSW welds obtained at a welding speed of 100 mm/min, which showed the best mechanical properties, had a relatively higher Vickers hardness, which indicates a good relationship between the welding parameter (heat input) and the hardness profile due to the microstructure refinements. It was estimated that these welding conditions were optimal, and under these conditions both grain growth and α-phase formation were prevented.  相似文献   

15.
This paper reports the fatigue behaviour of friction welded medium carbon steel–austenitic stainless steel (MCS–ASS) dissimilar joints. Commercial grade medium carbon steel rods of 12 mm diameter and AISI 304 grade austenitic stainless steel rods of 12 mm diameter were used to fabricate the joints. A constant speed, continuous drive friction welding machine was used to fabricate the joints. Fatigue life of the joints was evaluated conducting the experiments using rotary bending fatigue testing machine (R = −1). Applied stress vs. number of cycles to failure (S–N) curve was plotted for unnotched and notched specimens. Basquin constants, fatigue strength, fatigue notch factor and notch sensitivity factor were evaluated for the dissimilar joints. Fatigue strength of the joints is correlated with microstructure, microhardness and tensile properties of the joints.  相似文献   

16.
Underwater friction stir welding (underwater FSW) has been demonstrated to be available for the strength improvement of normal FSW joints. In the present study, a 2219 aluminum alloy was underwater friction stir welded at a fixed rotation speed of 800 rpm and various welding speeds ranging from 50 to 200 mm/min in order to clarify the effect of welding speed on the performance of underwater friction stir welded joint. The results revealed that the precipitate deterioration in the thermal mechanically affected zone and the heat affected zone is weakened with the increase of welding speed, leading to a narrowing of softening region and an increase in lowest hardness value. Tensile strength firstly increases with the welding speed but dramatically decreases at the welding speed of 200 mm/min owing to the occurrence of groove defect. During tensile test, the joint welded at a lower welding speed is fractured in the heat affected zone on the retreating side. While at higher welding speed, the defect-free joint is fractured in the thermal mechanically affected zone on the advancing side.  相似文献   

17.
In the present work, aluminium alloy AA2024-T3 thin sheets were joined by the Friction Stir Welding – FSW – process. Butt joints were obtained in 1.6 mm sheets, using an advancing speed of 700 mm/min. These joints were characterised by optical, scanning electron microscopy, tensile and fatigue mechanical tests. The results showed that the resulting microstructure is free of defects and the tensile strength of the welded joints is up to 98% of the base-metal strength. Fatigue tests result indicates an equivalent stress intensity factor (kt) of approximately 2.0 for the welded samples. Consequently, the FSW process can be advantageous compared to conventional riveting for airframe applications.  相似文献   

18.
The electron beam (EB) welding process is used to weld any metal that can be arc welded with equal or superior weld quality. EB welding is carried out in a high-purity vacuum environment, which results in freedom from impurities such as oxides and nitrides. Thus, pore-free joints can readily be achieved in metallic materials, such as Al-alloys and Ti-alloys. However, autogenous EB welding of some aluminium alloys leads to a significant strength reduction (undermatching) in the fusion zone due to the loss of strengthening phases. For such Al-alloys, the local microstructure-property relationships should be established to satisfy the service requirement of a welded component with strength undermatching. Autogenous EB welding was performed on 5 mm thick aluminium alloy 7020 plate. Microstructural characterization of the weld metals was made by optical and scanning electron microscopy. Extensive microhardness measurements were conducted in the weld regions of the joints which exhibited a hardness loss in the fusion zone due to the loss of strengthening phases. Tensile properties of the joints were determined by testing flat transverse tensile specimens at room temperature without machining the weld profiles. Furthermore, elastic-plastic fracture toughness tests (CTOD) were carried out on the base material and welded joints at room temperature.  相似文献   

19.
690 MPa级低合金高强钢焊接接头组织性能   总被引:1,自引:1,他引:0  
为探讨690 MPa级低合金高强钢焊接接头组织与性能的关系,采用手工电弧焊(SMAW)和埋弧焊(SAW)获得成形良好的焊接接头,经过拉伸、冲击、弯曲试验及光学显微镜、扫描电镜和透射电镜分析,对两种焊接方法的接头组织性能进行研究.结果表明:两种焊接方法的焊缝组织主要为板条状贝氏体和少量针状铁素体,粗晶区为粗大贝氏体和少量马氏体;焊缝中含有大量分布均匀的微小球形夹杂物;两种焊接方法所得焊接接头都具有较高力学性能,-50℃的冲击断口形貌为韧窝、准解理混合型;埋弧焊焊缝冲击韧性低于手工电弧焊,手工电弧焊熔合线处冲击吸收功小于埋弧焊,但随距熔合线距离增加其值增加更快.显微组织和夹杂物是影响接头性能的主要因素.  相似文献   

20.
From the results of the bending strength and Weibull modulus of the joints of silicon nitride ceramics brazed using aluminium-silicon and aluminium-magnesium alloy filler metals at a temperature of 1073 K for 0.9 ksec in a vacuum of 1.3 × 10–3 Pa, silicon, especially, present in a small amount in the filler metals, was found to be effective in improving the bond strength, while magnesium in the filler metals was harmful to the joining. This can result in the formation of a thick stable alumina layer on the surfaces of the filler metals containing magnesium during brazing which prevented contact of the filler metals with the silicon nitride ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号