首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The effect of the addition of Fe2O3 and heat treatment duration on the magnetic susceptibility of vanadium borophosphate glass were studied. The magnetic susceptibility of glass samples was found to increase with increasing Fe2O3 content, which may be explained by the formation of the FeO6 group and the change of Fe2+ to Fe3+ which has higher paramagnetic properties. No detectable changes in the magnetic susceptibility with heat treatment for the samples containing 0.0, 0.5 and 1.0 mol% Fe2O3 was observed. The magnetic susceptibility for the heat treated samples containing 2.5, 5.0 and 7.5 mol% Fe2O3 decreases sharply with increasing duration of heat treatment up to 6 h and then remains almost constant. The sharp decrease in magnetic susceptibility of 2.5 mol% Fe2O3 is attributed to the increase in the number of ferrous ions. The sharp decrease for samples containing 5.0 and 7.5 mol% Fe2O3 is attributed to the increase in the number of Fe3+ in tetrahedral co-ordination. The rate of crystallization owing to the heat treatment was calculated and was found to increase with increasing iron oxide content. The geometry of crystallization was found to be in three-, two-and one-dimension(s) for samples containing 2.5, 5.0 and 7.5 mol% Fe2O3, respectively.  相似文献   

2.
Glasses from xFe2O3 · (100 − x)[P2O5 · TeO2] system, with 0 ≤ x ≤ 50 mol%, were investigated by X-ray diffraction, FT-IR and EPR spectroscopies. The XRD patterns show a vitreous state of studied samples for x ≤ 35 mol% Fe2O3. The FT-IR spectrum of the P2O5 · TeO2 glass matrix reveals a structure formed from PO4, TeO4 and TeO3 units. The addition and the increasing of Fe2O3 content modify progressively the structure of the glass matrix. The local structure in the investigated glasses was revealed by means of EPR using Fe3+ (3d5; 6S5/2) ions as paramagnetic probes. The EPR spectra present two resonance absorption lines characteristic to Fe3+ ions centred at geff ≈ 2.0, for 0.5 ≤ x ≤ 35 mol% and geff ≈ 4.3, for 0.5 ≤ x ≤ 5 mol%. The variation of the EPR parameters, the intensity and line-width of these absorption lines, with iron ions composition has been followed.  相似文献   

3.
Structural properties of lead vanadate glasses containing La3+ or Fe3+ ions were investigated using X-ray diffraction, Fourier transform infrared spectroscopy and laser Raman spectroscopy. Crystalline Pb2V2O7 was formed for the molar composition 66.7PbO-33.3V2O5. Incorporation of greater quantities of La3+ into lead metavanadate glass caused the crystallization of Pb2V2O7. Fourier transform infrared and laser Raman spectra also suggested the presence of LaVO4. Incorporation of Fe3+ ions into lead metavanadate glass, up to 20 wt% Fe2O3, did not cause crystallization inside the glass matrix. Changes in the vibrational spectra are discussed.  相似文献   

4.
A barium borate glass system was prepared containing different amounts of iron. The prepared glasses were heat treated at 550° C for 2, 6, 12, 18 and 24 h. Also the glasses were irradiated usingψ-ray at a dose of 4.805 × 104rad h−1 for 12, 18 and 24 h. The infrared spectra were recorded for the untreated and heat treated samples. It was found that, when the Fe2O3 was introduced in the glass the triangle BO3 groups were transferred to BO4 groups. The formation of non-bridging oxygen with high concentration was also observed as a result of introducing Fe2O3 in the glass. The absorption bands of the IR spectra of the irradiated samples indicated no significant variations, and only a transfer of some BO4 groups to BO3 groups could be observed.  相似文献   

5.
Various methods have been used to study the physical properties of the V2O5-Fe2O3 and V2O5-Fe2O3-Li2O systems, including X-ray, electron microscope, Mössbauer effect, NMR and thermogravimetric measurements. The iron ions are approximately equally distributed in substitutional and interstitial sites in the V2O5 lattice. The maximum number of iron ions dissolved in the V2O5 matrix corresponds to 4 mol % Fe2O3. In all the samples a quantity of Fe2O3 which has not been included in lattice is observed. The V2O5-Fe2O3 and V2O5-Fe2O3-Li2O systems are formed from solid solutions mixed with very small Fe2O3 particles. The analysis of the charge compensation of iron ions suggests that V2O5 is a quasi-amorphous semiconductor. Irradiation of V2O5-based samples with an electron beam induces the V2O5 platelets to convert to the VO x phase.  相似文献   

6.
Magnetic bioactive glass ceramic (MG) in the system CaO–SiO2–P2O5–MgO–CaF2–MnO2–Fe2O3 for hyperthermia treatment of bone tumor was synthesized. The phase composition was investigated by XRD. The magnetic property was measured by VSM. The in vitro bioactivity was investigated by simulated body fluid (SBF) soaking experiment. Cell growth on the surface of the material was evaluated by co-culturing osteoblast-like ROS17/2.8 cells with materials for 7 days. The results showed that MG contained CaSiO3 and Ca5(PO4)3F as the main phases, and MnFe2O4 and Fe3O4 as the magnetic phases. Under a magnetic field of 10,000 Oe, the saturation magnetization and coercive force of MG were 6.4 emu/g and 198 Oe, respectively. After soaking in SBF for 14 days, hydroxyapatite containing CO3 2− was observed on the surface of MG. The experiment of co-culturing cells with material showed that cells could successfully attach and well proliferate on MG.  相似文献   

7.
A glass system was prepared according to the formula 75 mol % B2O3-(25 –x) mol % BaO –x mol % Fe2O3, wherex = 0, 1, 2.5, 5, 7.5 and 10. The glasses were subjected to heat treatment at 550° C for 2, 6, 12, 18 and 24 h. The glasses were also irradiated using-rays at a dose of 4.805 × 104 rad h–1 for 12, 18 and 24 h. An X-ray diffraction technique was used to identify the separated crystalline phases. The electrical conductivity and activation energy of untreated, heat-treated and irradiated samples were measured and calculated. The rate and the dimensions of crystallization were also calculated by using the Avrami equation. It was found that-Fe2O3 is the separated phase when a sample containing 7.5 mol% Fe2O3 is heat treated for 24h;-Fe2O3 and Fe2O3 are the separated phases when the sample containing 10 mol% Fe2O3 is heat treated for 6, 12 and 18 h, with the addition of BaO when the sample is heat treated for 24 h. A miminum value for the electrical conductivity of glass samples was found to occur around an Fe2O3/BaO ratio of 0.425. The rate of crystallization in the sample containing 10 mol% Fe2O3 is 1.30607 × 10–3 and the geometry of crystallizationn is 1.2238, which indicates that the crystallization was in one dimension.  相似文献   

8.
Recent measurements on the V2O5-GeO2 glass system consisting of an equimolar mixture of V2O5 and GeO2 revealed that increase in electrical conductivity of these glasses upon annealing could be attributed to the increase in V4+ and V3+ content which accompanied the microstructure formation. In the present work we report a similar study on V2O5-TeO2 and V2O5-P2O5 glass systems. It was found that in tellurite glass V3+ content increased upon annealing and V4+ content remained unchanged. In phosphate glass some increase in V4+ and no significant change in V3+ contents were observed. V3+ and V4+ contents in glasses could be best estimated from optical and electron paramagnetic resonance spectra, respectively.  相似文献   

9.
The local structure around Cu2+ ion has been examined by means of electron spin resonance and optical absorption measurements in xLi2O-(40-x)Na2O-50B2O3-10As2O3 glasses. The site symmetry around Cu2+ ions is tetragonally distorted octahedral. The ground state of Cu2+ isd x 2y 2.The glass exhibited broad absorption band near infrared region and small absorption band around 548 nm, which was assigned to the 2B1g2Eg transition.  相似文献   

10.
The d.c. conductivity (σ) of V2O5-SnO-TeO2 glasses prepared by the press-quenching method was studied at temperatures from room temperature (RT) to 473 K, and the effect of annealing on σ was investigated. The conductivity of 50V2O5·20SnO·30TeO2 glass was determined to be 3.98×10−4 Scm−1 at 473 K and was unchanged for annealing (6–48 h) at 493 K, lower than Tg = 501 K, while its density increased with annealing time. These glasses were found to be n-type semiconductors, and the conduction was confirmed to be due to adiabatic small polaron hopping for V2O5 ≧ 50 mol%, and non-adiabatic for V2O5 < 50 mol%. The activation energy for conduction, W, decreased with annealing time. Variations in oxygen molar volume of the glasses with annealing time inferred a change in glass structure, from loosely to closely packed, resulting in a decrease in vanadium ion spacing with annealing. This caused an increase in the polaron band width, producing a decrease in polaron hopping energy and W. The effect of annealing time on the density of 50V2O5·20SnO·30TeO2 glass was explained adequately by Winter's formula.  相似文献   

11.
Glasses of the xFe2O3·(100−x)[B2O3·SrO] system, with 0 ≤ x ≤ 30 mol% were studied by X-ray diffraction, density, optical microscopy and FT-IR spectroscopy measurements. The X-ray patterns for the prepared system show that vitreous phase is present only in the sample with x < 40 mol%. For x ≥ 40 mol% in the studied samples is evidenced crystalline phase of Fe2O3. SEM measurements for the sample with x = 40 mol% shows that there are formed Fe2O3 microcrystallites with 10–20 μm dimension. FT-IR spectroscopy measurements shown that BO3 and BO4 are the main structural units of the glass system and the iron ions are located in the glass network.  相似文献   

12.
Characterization of the binary V2O5-Bi2O3 glasses prepared by rapidly quenching the melt has been made from the studies of X-ray diffraction, scanning electron microscopy, infrared absorption, differential thermal analysis, electron paramagnetic resonance, chemical analysis, density and electrical properties. Stable glasses are obtained for 95 to 75 mol % V2O5 by quenching on a stainless steel substrate, while quenching on a copper substrate extends the glass formation range from 95 to 70 mol % V2O5. The V-O bond vibration in the glasses occurs at 1020 cm–1 and the V5% ion exists in six-fold coordination as in crystalline V2O5. All the glasses appear to be in single phase. The spin concentration in the glasses is found to be independent of temperature. A second heat-treatment at 255° C develops crystalline phase in the glasses. Unlike infrared absorption, electron paramagnetic resonance, density and chemical compositions, the electrical and thermal (DTA) properties are found to be slightly sensitive to the thermal history of preparation of the glasses. The high-temperature (300 to 500 K) conduction in the glasses seems to be due to adiabatic hopping of polarons. The thermopower is observed to be independent of temperature and provides evidence for small polaron formation in the glasses.  相似文献   

13.
Glassy solids of the system Al2O3-P2O5-SiO2, which have not been obtainable because of the devitrification of glass during the cooling process after melting, were obtained by the gel method. After the gels of the system Al2O3-P2O5-SiO2 were prepared from AlCl3·6H2O, H3PO4 and Si(OC2H5)4, they were heat treated up to 800° C to obtain glassy solids. In SiO2 concentrations ranging from 75 to 82 mol % in batch compositions, non-porous transparent solids were obtained, while in SiO2 concentrations above 87 mol %, porous transparent solids were obtained. Tridymite was precipitated because of the crystallization of glassy solids during heat treatment above 800° C. It depended upon the microstructure of the gels whether non-porous glassy solids were obtained or not. The thermal expansion coefficients of the glassy solids were greatly dependent upon the concentration of P2O5, ranging from 1.7×10−6 to 4.2×10−6 (1/° C).  相似文献   

14.
In this paper, we have examined and analyzed the effects of systematic intercalation of the lead ions on vanadate–tellurate glass ceramics with interesting results. The structural properties of the lead–vanadate–tellurate glass ceramics of compositions xPbO·(100 − x)[6TeO2·4V2O5], x = 0 − 100 mol%, are reported for the first time. It has been shown by X-ray diffraction that single-phase homogeneous glasses with a random network structure can be obtained in this system. Among these unconventional lead–vanadate–tellurate glass ceramics, we found that network formers are good host material for lead ions and are capable to intercalate a variety of species such as Te2V2 5+O9, Pb3(V5+O4)2, Pb2V2 5+O7, and V2O5-rich amorphous phase. On the other hand, these glass ceramics contain V4+ and V5+ ions necessary for the electrical conduction. Based on these experimental results, we propose that the V4+=O bonds are created by two different mechanisms: the first of reduction of V5+ ions to V4+ ions and thus of creation of V4+=O bonds.  相似文献   

15.
The d.c. conductivity, σ, and the oxygen gas-sensing behaviour of V2O5–SnO–TeO2 glass prepared by press-quenching were studied in argon and oxygen gas atmospheres at temperatures ranging from 303–473 K. The glass of 50V2O5·20SnO·30TeO2 (mol %) was n-type semiconducting. The high-temperature conductivity was lower in oxygen and higher in argon than that in air. This was explained by the V4+ ions in the glass being oxidized by oxygen which had diffused into the glass, resulting in an increase in V5+ with time. The experimental relationship between σ and oxygen partial pressure, P O2, agreed quantitatively with the theoretical relation σ ∝ P O2 -1/4 . Changes in conductivity by switching the atmospheres between oxygen and argon gases were found to be reproducible. From the data of these dynamic changes, the oxygen gas sensitivity, S, at 473 K was obtained to be 1.3 in oxygen atmosphere. The dynamic changes could be quantitatively explained by an oxygen diffusion model. Throughout these discussions, the present tellurite glass was found to possess a potential applicability as an oxygen gas sensor. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
The Curie constant,C, Weiss constant, , effective magnetic moment, eff, and spectroscopic splitting factor,g, were determined for the Fe3+ ions in Fe2V4O13, FeVMoO7 and Fe4V2Mo3O20 at 76–300 K based on measurements of magnetic susceptibility of the phases. The Neel temperature,T N, of interest was based on the temperature dependence of magnetization of the phases. It was shown that a local antiferromagnetic arrangement of the Fe3+ ions in Fe2V4O13, FeVMoO7 and Fe4V2Mo3O20 is already involved at a temperature much higher than the Neel temperature, resulting from the cation-anion-cation superexchange between the Fe3+ ions with ad 5 configuration.  相似文献   

17.
Electron paramagnetic resonance (EPR) and dilatometric measurements in phosphosilicate glass have been made in order to elucidate an anomalous trend of the linear thermal expansion coefficientβ when Fe2O3 was added to the composition. The g≃2 and geff≃4.27 EPR lines were attributed, respectively, to undistorted and octahedrally coordinated Fe3+ ions, and to Fe3+ ions in low symmetry (rhombic) sites. The Fe3+ ion distribution in the network at different temperatures has been explained by a model of chemical insertion and it has been proved that the Fe3+ ions have two kinds of role as network modifiers. A relationship has also been found betweenβ and the amounts of Fe2O3 added in the range 0 to 12 wt %. It is with deep regret that we note the death of Professor G. L. Del Nero.  相似文献   

18.
A new type of ZnO-Al2O3-B2O3-SiO2 glassceramics seals to Kovar in electronic packaging was developed, whose coefficient of thermal expansion (CTE) and electrical resistance were 5.2 × 10−6/°C and over 1 × 1013 Ω·cm, respectively. The major crystalline phases in the glass-ceramics seals were ZnAl2O4, ZnB2O4 and NaSiAl2O4. The dielectric resistance of the glass-ceramic could be remarkably enhanced through the control of the alkali metal ions into the crystal lattices. It was found that the crystallization happened first on the surface of the sample, leaving the amorphous phase in the inner parts, which makes the glass suitable for sealing. The glass-ceramic showed better wetting on the Kovar surface, and sealing atmosphere and temperature showed great effect on the wetting angle. Strong interfacial bonding was obtained, which was mainly attributed to the interfacial reaction between SiO2 and FeO or Fe3O4. This paper was presented at 2008 MRS International Materials Research Conference and won the student best paper award of the conference.  相似文献   

19.

Recently, demand increased for dielectric materials used in energy storage devices at high voltage applications. Appearance of polar clusters in glass matrix could promote its use in energy storage applications. Conventional quenched glass sample of composition 10PbTiO3–10Fe2O3–30V2O5–50B2O3 were successfully developed. The glassy nature was confirmed by XRD and DSC measurements. Boson peak observed at low frequency from the Raman spectra confirms polar cluster formation. Dielectric properties of prepared glass were investigated in a wide range of frequency and temperature. Broad and diffuse peak of dielectric permittivity shifted to the higher temperatures, denoting the typical relaxor ferroelectrics like behavior. Sample shows energy storage density of about 164.7 mJ/cm3 at room temperature. Quenched glass sample shows typical anti-ferromagnetic behavior.

  相似文献   

20.
Chemical and structural properties of the mixed metal oxides (1–x)Fe2O3+xCr2O3 were studied by different techniques. X-ray powder diffraction showed the existence of solid solutions, (Fe1–x Cr x )2O3, over the whole concentration region, 0x1. The gradual replacement of Fe3+ with Cr3+ ions in samples prepared at 900°C caused changes in unit-cell parameters; most of these changes took place in the region fromx0.3–0.9. The samples having the fraction of Cr2O3 in the region from 0.7–0.8, contained two closely related phases, with slightly different compositions. After an additional heat treatment at 1100°C, these samples contained only one phase.57Fe Mössbauer spectroscopy showed a gradual decrease of hyperfine magnetic field with increasing Cr2O3 content. The sample having the fraction of Cr2O3 of 0.7, and prepared at 900°C, exhibited two separated sextets at room temperature, in comparison with other compositions showing one sextet. It was shown that Fourier transform infrared (FT-IR) spectroscopy is a powerful method for the investigation of structural changes in these solid solutions. The increase in the Cr2O3 content resulted in shifts of the corresponding infrared bands. In addition, a gradual transition of the spectrum typical for -Fe2O3 to the spectrum typical for Cr2O3 was shown. The transition effects observed in the FT-IR spectra were correlated with the X-ray powder diffraction and57Fe Mössbauer spectroscopic results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号