首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Carbon adsorption process is tested for removal of high concentration of organic mercury (thimerosal) from industrial process wastewater, in batch and continuously flow through column systems. The organic mercury concentration in the process wastewater is about 1123 mg/L due to the thimerosal compound. Four commercially available adsorbents are tested for mercury removal and they are: Calgon F-400 granular activated carbon (GAC), CB II GAC, Mersorb GAC and an ion-exchange resin Amberlite GT73. The adsorption capacity of each adsorbent is described by the Freundlich isotherm model at pH 3.0, 9.5 and 11.0 in batch isotherm experiments. Acidic pH was favorable for thimerosal adsorption onto the GACs. Columns-in-series experiments are conducted with 30-180 min empty bed contact times (EBCTs). Mercury breakthrough of 30 mg/L occurred after about 47 h (96 Bed Volume Fed (BVF)) of operation, and 97 h (197 BVF) with 120 min EBCT and 180 min EBCT, respectively. Most of the mercury removal is attributed to the 1st adsorbent column. Increase in contact time by additional adsorbent columns did not lower the effluent mercury concentration below 30 mg/L. However, at a lower influent wastewater pH 3, the mercury effluent concentration decreased to less than 7 mg/L for up to 90 h of column operation (183 BVF).  相似文献   

2.
Utilization of industrial waste products as adsorbents for the removal of dyes   总被引:10,自引:0,他引:10  
A number of low cost adsorbents from steel and fertilizer industries wastes have been prepared and investigated for the removal of anionic dyes such as ethyl orange, metanil yellow and acid blue 113 from aqueous solutions. The results indicate that inorganic wastes, i.e. blast furnace dust, sludge and slag from steel plants are not suitable for the removal of organic materials, whereas a carbonaceous adsorbent prepared from carbon slurry of fertilizer industry was found to adsorb 198, 211 and 219mg/g of ethyl orange, metanil yellow and acid blue 113, respectively. The adsorption of dyes on this adsorbent was studied as a function of contact time, concentration, particle size and temperature by batch method. The adsorption isotherm conformed to Langmuir model and the adsorption was found to be exothermic and physical in nature. Kinetic data conforms to Lagergren's equation with good correlation coefficients varying from 0.9998 to 0.9999 indicating that the adsorption is a first-order process. The adsorption data on carbonaceous adsorbent was compared to a standard activated charcoal sample and it was found that the prepared adsorbent is about 80% as efficient as standard activated charcoal and therefore, can be used as low cost alternative ( approximately 100 US dollars per ton) for colour removal from effluents.  相似文献   

3.
《工程(英文)》2017,3(3):409-415
Natural adsorbents such as banana pseudostem can play a vital role in the removal of heavy metal elements from wastewater. Major water resources and chemical industries have been encountering difficulties in removing heavy metal elements using available conventional methods. This work demonstrates the potential to treat various effluents utilizing natural materials. A characterization of banana pseudostem powder was performed using environmental scanning electron microscopy (ESEM) and Fourier-transform infrared (FTIR) spectroscopy before and after the adsorption of lead(II). Experiments were carried out using a batch process for the removal of lead(II) from an aqueous solution. The effects of the adsorption kinetics were studied by altering various parameters such as initial pH, adsorbent dosage, initial lead ion concentration, and contact time. The results show that the point of zero charge (PZC) for the banana pseudostem powder was achieved at a pH of 5.5. The experimental data were analyzed using isotherm and kinetic models. The adsorption of lead(II) onto banana pseudostem powder was fitted using the Langmuir adsorption isotherm. The adsorption capacity was found to be 34.21 mg·g–1, and the pseudo second-order kinetic model showed the best fit. The optimum conditions were found using response surface methodology. The maximum removal was found to be 89%.  相似文献   

4.
In our laboratory, we synthesized a novel surface tailored activated charcoal in removing nitrite species from fertilizer industrial effluents. A customized high temperature carbonate-steam activation technique was adopted to develop the sodium carbonate impregnated activated charcoal (SCIAC). The surface properties of the material were determined using SEM, TG and X-RD techniques. Batch adsorption experiments were performed for optimizing various conditions such as solution pH, contact time, temperature and adsorbent dose for maximizing the nitrite adsorption onto SCIAC. Considerably, a very high nitrite adsorption percentage of 83.8 was obtained for an initial nitrite concentration of 5.0?mg/L at pH 3.0. Among the various equilibrium and kinetic models, Freundlich and pseudo-second-order expressions, respectively, were well enough to explain the adsorption processes. In general, it may conclude that the change in surface characteristics of the adsorbent material after the pyrolysis process is highly favorable for effective removal of nitrite ions from aqueous systems. Adsorption capacity of SCIAC was 27.03?mg/g and studies revealed that the material was feasible in removing nitrite from industrial effluents.  相似文献   

5.
A comparative study of the adsorbents prepared from several industrial wastes for the removal of 2-bromophenol, 4-bromophenol and 2,4-dibromophenol has been carried out. The results show that maximum adsorption on carbonaceous adsorbent prepared from fertilizer industry waste has been found to be 40.7, 170.4 and 190.2 mg g(-1) for 4-bromophenol 2-bromophenol and 2,4-dibromophenol, respectively. As compared to carbonaceous adsorbent, the other three adsorbents (viz., blast furnace sludge, dust, and slag) adsorb bromophenols to a much smaller extent. This has been attributed to the carbonaceous adsorbent having a larger porosity and consequently higher surface area. The adsorption of bromophenols on this adsorbent has been studied as a function of contact time, concentration and temperature. The adsorption has been found to be endothermic, and the data conform to the Langmuir equation. The further analysis of data indicates that adsorption is a first order process. A comparative study of adsorption results with those obtained on standard activated charcoal sample shows that prepared carbonaceous adsorbent is about 45% as efficient as standard activated charcoal in removing bromophenols. To test the practical utility of this adsorbent, column operations were also carried out. The results were found satisfactory in removing bromophenols by column operations. Therefore, the present investigations recommend the use of carbon slurry waste as inexpensive adsorbent for small scale industries of developing/poor countries where disposal of solid waste of various industries and proper treatment of polluted wastewater is a serious problem.  相似文献   

6.
The use of low-cost, easy obtained, high efficiency and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from orange peel for the removal of direct blue-86 (DB-86) (Direct Fast Turquoise Blue GL) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were studied. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was determined as approximately 2.0. Maximum dye was sequestered within 30min after the beginning for every experiment. The adsorption of direct blue-86 followed a pseudo-second-order rate equation and fit well Langmuir, Tempkin and Dubinin-Radushkevich (D-R) equations better than Freundlich and Redlich-Peterson equations. The maximum removal of direct blue-86 was obtained at pH 2 as 92% for adsorbent dose of 6gL(-1) and 100mgL(-1) initial dye concentration at room temperature. The maximum adsorption capacity obtained from Langmuir equation was 33.78mgg(-1). Furthermore, adsorption kinetics of DB-86 was studied and the rate of adsorption was found to conform to pseudo-second-order kinetics with a good correlation (R2>0.99) with intraparticle diffusion as one of the rate determining steps. Activated carbon developed from orange peel can be attractive options for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater show better removal percentage of DB-86.  相似文献   

7.
Silica gel is widely used in research laboratories, especially for the purification of organic compounds. Consequently, waste silica gel is generated in increasing amounts. In this work, waste silica was modified by coating its surface with iron oxide aiming to obtain an effective adsorbent for metal removal from wastewater. In the preparation of the adsorbent, the optimal pretreatment temperature and iron concentration were investigated. The coated waste silica was characterized for BET surface area, pore size, specific pore volume and iron content. Iron oxide-coated waste silica was tested for the adsorption of Pb(II), Cu(II), Cd(II) and Ni(II) from solutions in a batch system. The effect of contact time, pH and salt concentration on metal adsorption was investigated. It was found that the adsorption of metals occurred rapidly and reached equilibrium within 30 min. The pH suitable for metal adsorption was between 6 and 7 and leaching of iron from the coating was observed only at pH 3 or lower. The presence of salt reduced the adsorption efficiency of the adsorbent. The adsorption behavior followed both Langmuir and Freundlich isotherms (25 degrees C). Finally, the efficacy of the adsorbents was investigated using aqueous lab waste where removal efficiencies ranging from 62 to 89% were achieved when the initial metal concentrations ranged from 13 to 42 mg L(-1).  相似文献   

8.
The adsorption of dimethyl sulfide from an aqueous solution by a cost-effective bamboo charcoal from Dendrocalamus was studied in comparison with other carbon adsorbents. The bamboo charcoal exhibited superior adsorption on dimethyl sulfide compared with powdered activated carbons at different adsorbent dosages. The adsorption characteristics of dimethyl sulfide onto bamboo charcoal were investigated under varying experimental conditions such as particle size, contact time, initial concentration and adsorbent dosage. The dimethyl sulfide removal was enhanced from 31 to 63% as the particle size was decreased from 24-40 to >300 mesh for the bamboo charcoal. The removal efficiency increased with increasing the adsorbent dosage from 0.5 to 10mg, and reached 70% removal efficiency at 10mg adsorbed. The adsorption capacity (μg/g) increased with increasing concentration of dimethyl sulfide while the removal efficiency decreased. The adsorption process conforms well to a pseudo-second-order kinetics model. The adsorption of dimethyl sulfide is more appropriately described by the Freundlich isotherm (R(2), 0.9926) than by the Langmuir isotherm (R(2), 0.8685). Bamboo charcoal was characterized by various analytical methods to understand the adsorption mechanism. Bamboo charcoal is abundant in acidic and alcohol functional groups normally not observed in PAC. A distinct difference is that the superior mineral composition of Fe (0.4 wt%) and Mn (0.6 wt%) was detected in bamboo charcoal-elements not found in PAC. Acidic functional group and specific adsorption sites would be responsible for the strong adsorption of dimethyl sulfide onto bamboo charcoal of Dendrocalamus origin.  相似文献   

9.
A new adsorbent was developed from waste ash resulting from municipal solid waste and coal co-combustion power plant. The ash was firstly subjected to hydrothermal treatment for zeolite synthesis, and then modified with iron(II) ions by agitation (ISZ) or ultrasonic (UISZ) treatment. The effect of operating factors such as pH, contact time, initial As(V) concentration and adsorbent dosage was investigated and the optimum operating conditions were established. The adsorption capacity for As(V) onto UISZ and ISZ were 13.04 and 5.37 mg g(-1), respectively. The adsorption isotherm data could be well described by Langmuir isotherm model. The optimum initial pH values for As(V) removal were 2.5 and 2.5-10.0 by ISZ and UISZ, respectively. The results indicated that ultrasound treatment scattered the particles of the adsorbent uniformly, which was in favor of impregnating iron ions into pores. Leaching of hazardous elements from the used adsorbents was very low. Accordingly, it is believed that the adsorbents developed in this study are environmentally acceptable and industrially applicable for utilization in arsenic-containing wastewater treatment.  相似文献   

10.
This paper reports the feasibility of using various agricultural residues viz. sugarcane bagasse (SCB), maize corncob (MCC) and Jatropha oil cake (JOC) for the removal of Cd(II) from aqueous solution under different experimental conditions. Effect of various process parameters, viz., initial metal ion concentration, pH, and adsorbent dose has been studied for the removal of cadmium. Batch experiments were carried out at various pH (2-7), adsorbent dose (250-2000 mg), Cd(II) concentration (5-500 mg l(-1)) for a contact time of 60 min. The maximum cadmium removal capacity was shown by JOC (99.5%). The applicability of Langmuir and Freundlich isotherm suggests the formation of monolayer of Cd(II) ions onto the outer surface of the adsorbents. Maximum metal removal was observed at pH 6.0 with a contact time of 60 min at stirring speed of 250 rpm with an adsorbent dose of 20 g l(-1) of the test solution. The maximum adsorption of cadmium (II) metal ions was observed at pH 6 for all the adsorbents viz; 99.5%, 99% and 85% for JOC, MCC, and SCB, respectively. Order of Cd(II) removal by various biosorbents was JOC>MCC>SCB. JOC may be an alternative biosorbent for the removal of Cd(II) ions from the aqueous solution. FT-IR spectra of the adsorbents (before use and after exhaustion) were recorded to explore number and position of the functional groups available for the binding of Cd(II) ions on to studied adsorbents. These results can be helpful in designing a batch mode system for the removal of cadmium from dilute wastewaters.  相似文献   

11.
A new biosorbent produced from castor leaves powder [Ricinus communis L.] was used to remove mercury(II) from aqueous solutions. The initial mercury concentrations, contact time and initial pH were evaluated. The ability of castor leaves to remove mercury at various pH (2-8) was studied. The maximum capacity (Qmax) of biomass was found to be 37.2mg Hg(II)/g at pH 5.5. Biosorption equilibrium was established in approximately 1h. The equilibrium data were described well by Langmuir and Freundlich models. The adsorbed mercury on biomass was desorbed using 10 ml of 4M HCl solution. The biomass could be reused for other biosorption assays. The ability of biomass to adsorb mercury(II) in a column was investigated. These studies consider the possibility of using leaves of castor tree as an inexpensive adsorbent for the removal of Hg(II) from contaminated chemical and mining industry wastewaters. It is also suggested that the dried biomass might be simply kept and used in a very low cost metal ion removal system.  相似文献   

12.
The present study aims to develop a new potentially low-cost, sustainable treatment approach to soluble inorganic phosphorus removal from synthetic solutions and secondary wastewater effluents in which a plant waste (Posidonia oceanica fiber: POF) is used for further agronomic benefit. Dynamic flow tests using a continuous stirred tank reactor (CSTR) were carried out to study the effect of initial concentration of phosphorus, amount of adsorbent, feeding flow rate and anions competition. The experimental results showed that the removal efficiency of phosphorus from synthetic solutions is about 80% for 10 g L(-1) of POF. In addition, the variation of the initial concentration of phosphorus from 8 to 50 mg L(-1) increased the adsorption capacity from 0.99 to 3.03 mg g(-1). The use of secondary treated wastewater showed the presence of competition phenomenon between phosphorus and sulphate which could be overcoming with increasing the sorptive surface area and providing more adsorption sites when increasing the adsorbent dosage of POF. Compared with columns studies, this novel CSTR system showed more advantages for the removal of soluble phosphorus as a tertiary treatment of urban secondary effluents with more adsorption efficiency and capacity, in addition to the prospect use of saturated POF with nutriment as fertilizer and compost.  相似文献   

13.
The Brazilian pine-fruit shell (Araucaria angustifolia) is a food residue, which was used in natural and carbonized forms, as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. Chemical treatment of Brazilian pine-fruit shell (PW), with sulfuric acid produced a non-activated carbonaceous material (C-PW). Both PW and C-PW were tested as low-cost adsorbents for the removal of MB from aqueous effluents. It was observed that C-PW leaded to a remarkable increase in the specific surface area, average porous volume, and average porous diameter of the adsorbent when compared to PW. The effects of shaking time, adsorbent dosage and pH on adsorption capacity were studied. In basic pH region (pH 8.5) the adsorption of MB was favorable. The contact time required to obtain the equilibrium was 6 and 4h at 25 degrees C, using PW and C-PW as adsorbents, respectively. Based on error function values (F(error)) the kinetic data were better fitted to fractionary-order kinetic model when compared to pseudo-first order, pseudo-second order, and chemisorption kinetic models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. For MB dye the equilibrium data were better fitted to the Sips isotherm model using PW and C-PW as adsorbents.  相似文献   

14.
Charcoal prepared from biomass, wastes of the local forest (tree branches), activated with NaOH solution and with Degussa P25 (TiO2) was used as adsorbent and photocatalyst for the removal of cadmium cations and methylene blue from wastewater. These materials were characterized by using atomic force microscopy for roughness surface. The energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analysis indicate the existence of nano TiO2 on the charcoal surface. Additionally, the FT-IR spectroscopy measurements indicate that the alkali treatment develops hydroxyl groups on charcoal surface which could adsorb methylene blue, heavy metals and other pollutants via the synergistic effect. The activities of the charcoal (BC), activated charcoal (BCA) and BCA/TiO2 mixture (BCA-D) depend on the contact time, adsorbent dosage and pH. The adsorption kinetic data were tested using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The kinetic studies showed that the adsorption is followed by the pseudo-second-order reaction with regard to the intraparticle diffusion rate kinetics.  相似文献   

15.
The wheat husk, an agricultural by-product, has been activated and used as an adsorbent for the adsorption of Reactofix golden yellow 3 RFN from aqueous solution. In this work, adsorption of Reactofix golden yellow 3 RFN on wheat husk and charcoal has been studied by using batch studies. The equibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage, dye concentration and contact time. The equilibrium adsorption capacities of wheat husk and charcoal for dye removal were obtained using Freundlich and Langmuir isotherms. Thermodynamic parameters such as the free energies, enthalpies and entropies of adsorption were also evaluated. Adsorption process is considered suitable for removing color, COD from wastewater.  相似文献   

16.
Steel slag with magnetic separation was used to remove phosphate from aqueous solutions. The influence of adsorbent dose, pH, and temperature on phosphate removal was investigated in a series of batch experiments. Phosphate removal increased with the increasing temperature, adsorbent dose and decreased with increasing initial phosphate concentrations, while it was at its peak at pH of 5.5. The phosphate removal predominantly occurred through ion exchange. The specific surface area of the steel slag was 2.09m2/g. The adsorption of phosphate followed both Langmuir and Freundlich isotherms. The maximum adsorption capacity of the steel slag was 5.3mgP/g. The removal rates of total phosphorus (TP) and dissolved phosphorus (DP) from secondary effluents were 62-79% and 71-82%, respectively. Due to their low cost and high capability, it was concluded that the steel slag may be an efficient adsorbent to remove phosphate both from solution and wastewater.  相似文献   

17.
Abstract

Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH2) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g?1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.  相似文献   

18.
A novel zwitterionic graphene oxide-based adsorbent was first synthesized in a multistep procedure including the successive grafting of bis(2-pyridylmethyl)amino groups (BPED) and 1,3-propanesultone (PS) onto graphene oxide (GO) sheets. Then, the as-prepared materials were used as adsorbent for the removal of metal ions from aqueous solutions. The influence of solution pH, contact time, metal ion concentration, and temperature onto the adsorption capacity of the zwitterionic GO-BPED-PS adsorbent was investigated and compared with the GO-BPED adsorbent. In particular, it was shown that the maximum adsorption capacities of the GO-BPED-PS adsorbent were as high as 4.174 ± 0.098 mmol.g?1 for the Ni(II) ions and 3.902 ± 0.092 mmol.g?1 for the Co(II) ions under optimal experimental conditions (metal ion concentration = 250 mg.L?1, pH = 7 and T = 293 K). In addition, the adsorption behaviors of Ni(II) and Co(II) ions onto both the GO-BPED and GO-BPED-PS adsorbents fitted well with a pseudo-second-order kinetic model and a Jossens isotherm model. Moreover, adsorption thermodynamics of Ni(II) and Co(II) ions have been studied at various temperatures and confirmed the exothermic adsorption nature of the adsorption process onto the GO-BPED-PS adsorbent. Furthermore, the zwitterionic GO-BPED-PS adsorbent retained good adsorption properties after recycling 18 times which is much better than the conventional adsorbents.  相似文献   

19.
Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH2) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g−1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.  相似文献   

20.
In this study, chitosan functionalised magnetic nano‐particles (CMNP) was synthesised and utilised as an effective adsorbent for the removal of Pb(II) ions from aqueous solution. The experimental studies reveal that adsorbent material has finer adsorption capacity for the removal of heavy metal ions. Parameters affecting the adsorption of Pb(II) ions on CMNP, such as initial Pb(II) ion concentration, contact time, solution pH, adsorbent dosage and temperature were studied. The adsorption equilibrium study showed that present adsorption system followed a Freundlich isotherm model. The experimental kinetic studies on the adsorption of Pb(II) ions exhibited that present adsorption process best obeyed with pseudo‐first order kinetics. The maximum monolayer adsorption capacity of CMNP for the removal of Pb(II) ions was found to be 498.6 mg g−1. The characterisation of present adsorbent material was done by FTIR, energy disperse X‐ray analysis and vibrating sample magnetometer studies. Thermodynamic parameters such as Gibbs free energy (ΔG °), enthalpy (ΔH °) and entropy (ΔS °) have declared that the adsorption process was feasible, exothermic and spontaneous in nature. Sticking probability reported that adsorption of Pb(II) ions on CMNP was favourable at lower temperature and sticking capacity of Pb(II) ions was very high.Inspec keywords: adsorption, lead, wastewater treatment, monolayers, Fourier transform infrared spectra, X‐ray chemical analysis, magnetometers, pHOther keywords: poisonous Pb(II) ions surface adsorption, chitosan functionalised magnetic nanoparticle, CMNP, Pb(II) ions removal, aqueous solution, finer adsorption capacity, heavy metal ion removal, contact time, solution pH, adsorbent dosage, adsorption equilibrium, Freundlich isotherm model, pseudofirst order kinetics, monolayer adsorption capacity, FTIR, energy disperse X‐ray analysis, vibrating sample magnetometer study, thermodynamic parameter, sticking probability, Pb(II) ions sticking capacity, initial Pb(II) ion concentration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号