首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the genotoxicity of the HA/ZrO2 composite particles by using the micronucleus test (MNT) in vitro. HA/ZrO2 composite particles prepared by sintering at high temperature and pressure, that used powder of HA and ZrO2 of different proportions, were compared with pure HA particles and pure ZrO2 particles. The effect of the composite particles on cell proliferation of rabbit mesenchymal stem cells, and its the genotoxicity to rabbit mesenchymal stem cells were detected by MNT method. The MTT test showed that both pure HA particles and composite particles which contained HA promoted cell proliferation of rabbit mesenchymal stem cells, while pure ZrO2 particles did not, and there was a significant difference (P < 0.05). The MNT test showed no significant difference between the HA group and the negative control group (P > 0.05), but a significant difference between the HA group and the positive control group (P < 0.05). The difference between the ZrO2 group and the negative control group was significant (P < 0.01), while the difference between the ZrO2 group and the positive control group was insignificant (P > 0.05). The genotoxicity of the HA/ZrO2 composite particle increased with a higher proportion of ZrO2 and an increase in the concentration of the composite, and the 30 wt.% HA/70% ZrO2 composite with 200 μg/mL concentration showed significant genotoxicity (P < 0.01).  相似文献   

2.
Porous scaffolds are limited in volume due to diffusion constraint and delay of vascular network formation. Channels have the potential to speed up cellular penetration. Their effectiveness in improving angiogenic cell penetration was assessed in vitro and in vivo in 3-D collagen scaffolds. In vitro, channelled and non-channelled scaffolds were seeded with vascular smooth muscle cells. Results demonstrated that the scaffolds supported angiogenic cell ingrowth in culture and the channels improved the depth of cell penetration into the scaffold (P < 0.05). The cells reside mainly around and migrate along the channels. In vivo, channels increased cell migration into the scaffolds (P < 0.05) particularly angiogenic cells (P < 0.05) resulting in a clear branched vascular network of microvessels after 2 weeks in the channelled samples which was not apparent in the non-channelled samples. Channels could aid production of tissue engineered constructs by offering the possibility of rapid blood vessel infiltration into collagen scaffolds.  相似文献   

3.
通过实验考察了A3α-肽聚糖(PG)制剂对养成期凡纳滨对虾的生长、免疫机能及抗白斑综合征病毒(WSSV)感染能力的影响。设立了连续投喂、间隔投喂和浸浴等6个实验组,分别在30d、60d和90d时,测定对虾的体长、体重、免疫机能和对虾的抗WSSV感染力。结果表明:30d时,连续投喂组对虾的体长和浸浴组及0.05%、0.1%PG连续投喂组对虾的体重较对照组有显著增长(P〈0.05);0.05%、0.1%PG连续投喂组对虾体内的PO活性较对照组有显著提高(P〈0.05);60d时,浸浴组及0.05%、0.1%PG连续投喂组对虾的体长、体重较对照组均有极显著增长(P〈0.01),浸浴组、0.1%PG连续投喂组对虾血细胞吞噬活性显著增强(P〈0.05),浸浴组及0.05%、0.1%PG连续投喂组对虾血浆上清液PO活性均有显著提高(P〈0.05);90d时,浸浴组对虾的体长、体重较对照组均有极显著增长(P〈0.01),间隔投喂组对虾血细胞吞噬活性显著增强(P〈0.05),间隔投喂组血浆中的PO活性显著增高(P〈0.05)。各期感染实验均证明PG能增强对虾对WSSV的抗感染能力.  相似文献   

4.
Erythropoietin (EPO) could promote the angiogenesis and may also play a role in bone regeneration. This study was conducted to evaluate the osteogenesis and angiogenesis effects of EPO and the efficacy of deproteinized bovine bone/recombinant human EPO scaffold on bone defect repair. Twenty-four healthy adult goats were chosen to build goat defects model and randomly divided into four groups. The goats were treated with DBB/rhEPO scaffolds (group A), porous DBB scaffolds (group B), autogenous cancellous bone graft (group C), and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The grey value of radiographs was used to evaluate the healing of the defects and the outcome revealed that the group A had a better outcome of defect healing compared with group B (P < 0.05). However, the grey values in group A were lower than group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). The newly formed bone area was calculated from histological sections and the results demonstrated that the amount of new bone in group A increased significantly compared with that in group B (P < 0.05) but was inferior to that in group C (P > 0.05) at 4, 8, 12 weeks respectively. In addition, the expression of vascular endothelial growth factor (VEGF) by immunohistochemical testing and real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group B (P < 0.05), and also better than that in group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). Therefore, EPO has significant effects on bone formation and angiogenesis, and has capacity to promote the repair of bone defects. It is worthy of being recommended to further studies.  相似文献   

5.
《工程(英文)》2017,3(5):753-759
Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study was undertaken to evaluate the effect of the physiological state of Holstein-Friesian heifers on their enteric CH4 emissions while grazing a perennial ryegrass sward. Two experiments were conducted: Experiment 1 ran from May 2011 for 11 weeks and Experiment 2 ran from August 2011 for 10 weeks. In each experiment, Holstein-Friesian heifers were divided into three treatment groups (12 animals/group) consisting of calves, yearling heifers, and in-calf heifers (average ages: 8.5, 14.5, and 20.5 months, respectively). Methane emissions were estimated for each animal in the final week of each experiment using the sulfur hexafluoride tracer technique. Dry matter (DM) intake was estimated using the calculated metabolizable energy (ME) requirement divided by the ME concentration in the grazed grass. As expected, live weight increased with increasing animal age (P < 0.001); however, there was no difference in live weight gain among the three groups in Experiment 1, although in Experiment 2, this variable decreased with increasing animal age (P < 0.001). In Experiment 1, yearling heifers had the highest CH4 emissions (g·d−1) and in-calf heifers produced more than calves (P < 0.001). When expressed as CH4 emissions per unit of live weight, DM intake, and gross energy (GE) intake, yearling heifers had higher emission rates than calves and in-calf heifers (P < 0.001). However, the effects on CH4 emissions were different in Experiment 2, in which CH4 emissions (g·d−1) increased linearly with increasing animal age (P < 0.001), although the difference between yearling and in-calf heifers was not significant. The CH4/live weight ratio was lower in in-calf heifers than in the other two groups (P < 0.001), while CH4 energy output as a proportion of GE intake was lower in calves than in yearling and in-calf heifers (P < 0.05). All data were then pooled and used to develop prediction equations for CH4 emissions. All relationships are significant (P < 0.001), with R2 values ranging from 0.630 to 0.682. These models indicate that CH4 emissions could be increased by 0.252 g·d−1 with an increase of 1 kg live weight or by 14.9 g·d−1 with an increase of 1 kg·d−1 of DM intake; or, the CH4 energy output could be increased by 0.046 MJ·d−1 with an increase of 1 MJ·d−1 of GE intake. These results provide an alternative approach for estimating CH4 emissions from grazing dairy heifers when actual CH4 emission data are not available.  相似文献   

6.
The stress conditions imposed by the impact of metal and non‐metal oxide nanoparticles over plant systems enhances the synthesis of reactive oxygen species (ROS), resulting in oxidative damage at cellular level. The objective of this study was to synthesise the gold nanoparticles (GNps) from the leaves protein of Nicotiana tabacum L. cv. xanthi, its characterisation, and response on plant physiology and ROS scavenging activity on plants after exposure to different stresses. The authors have treated N. tabacum L. cv. xanthi plants with 100, 200, 300, 400, and 500 ppm biochemically synthesised GNps and examined physiological as well as biochemical changes. Results showed that biochemically synthesised GNps exposure significantly increased the seed germination (P  < 0.001), root (P  < 0.001), shoot growth (P  < 0.001), and antioxidant ability (P  < 0.05) of plants depending on bioengineered GNPs concentrations. Low concentrations (200–300 ppm) of GNps boosted growth by ∼50% and significantly increase in photosynthetic parameters such as total chlorophyll content (P  < 0.05), membrane ion leakage (P  < 0.05) as well as malondialdehyde (P  < 0.05) content with respect to untreated plants under stress conditions. The high concentration (400–500 ppm) of GNps affected these parameters in a negative manner. The total antioxidant activity was also elevated in the exposed plants in a dose‐dependent manner.Inspec keywords: toxicology, nanoparticles, membranes, biotechnology, oxidation, proteins, tobacco industryOther keywords: biochemical synthesis, gold nanoparticles, leaf protein, tobacco plant, stress conditions, nonmetal oxide nanoparticles, reactive oxygen species, oxidative damage, leaves protein, plant physiology, ROS scavenging activity, xanthi plants, biochemical changes, nicotiana tabacum L. cv. xanthi  相似文献   

7.
The objective of this study is to investigate the effects of application of ultrasound on the physical properties of a novel NVC (N-vinylcaprolactam)-containing conventional glass-ionomer cement (GIC). Experimental GIC (EXP) samples were made from the acrylic acid (AA)–itaconic acid (IA)–NVC synthesized terpolymer with Fuji IX powder in a 3.6:1 P/L ratio as recommended by the manufacturer. Specimens were mixed and fabricated at room temperature and were conditioned in distilled water at 37°C for 1 day up to 4 week. Ultrasound (US) was applied 20 s after mixing by placing the dental scaler tip on the top of the cement and applying light hand pressure to ensure the tip remained in contact with cement without causing any deformation. Vickers hardness was determined using a microhardness tester. The working and setting times were determined using a Gillmore needle. Water sorption was also investigated. Commercial Fuji IX was used as control for comparison (CON). The data obtained for the EXP GIC set through conventional set (CS) and ultrasonically set (US) were compared with the CON group, using one-way ANOVA and the Tukey multiple range test at α = 0.05. Not only ultrasonic (US) application accelerated the curing process of both EXP cement and CON group but also improved the surface hardness of all the specimens. US set samples showed significantly lower water sorption values (P < 0.05) due to improved acid–base reaction within the GIC matrix and accelerated maturation process. According to the statistical analysis of data, significant increase was observed in the surface hardness properties of CS and US specimens both in EXP samples and the CON groups. It was concluded that it is possible to command set GICs by the application of ultrasound, leading to GICs with enhanced physical and handling properties. US application might be a potential way to broaden the clinical applications of conventional GICs in restorative dentistry for procedures such as class V cavity restorations.  相似文献   

8.
Surgical reconstruction of large tendon defects is technically demanding. Tissue engineering is a new option. We produced a novel tissue engineered, collagen based, bioimplant and in vitro characterizations of the implant were investigated. In addition, we investigated role of the collagen implant on the healing of a large tendon defect model in rabbits. A two cm length of the left rabbit’s Achilles tendon was transected and discarded. The injured tendons of all the rabbits were repaired by Kessler pattern to create and maintain a 2 cm tendon gap. The collagen implant was inserted in the tendon defect of the treatment group (n = 30). The defect area was left intact in the control group (n = 30). The animals were euthanized at 60 days post injury (DPI) and the macro- micro- and nano- morphologies and the biomechanical characteristics of the tendon samples were studied. Differences of P < 0.05 were considered significant. The host graft interaction was followed at various stages of tendon healing, using pilot animals. At 60 DPI, a significant increase in number, diameter and density of the collagen fibrils, number and maturity of tenoblasts and tenocytes, alignment of the collagen fibrils and maturity of the elastic fibers were seen in the treated tendons when compared to the control ones (P < 0.05). Compared to the control lesions, number of inflammatory cells, amount of peritendinous adhesions and muscle fibrosis and atrophy, were significantly lower in the treated lesions (P < 0.05). Treatment also significantly increased load to failure, tensile strength and elastic modulus of the samples as compared with the control ones. The collagen implant properly incorporated with the healing tissue and was replaced by the new tendinous structure which was superior both ultra-structurally and physically than the loose areolar connective tissue regenerated in the control lesions. The results of this study may be valuable in the clinical practice.  相似文献   

9.
In this study, a new dimethacrylate monomer 5,5′-bis[4-(2′-hydroxy-3′-methacryloyloxy-propoxy)-phenyl]-hexahydro-4,7-methan-oindan (5,5′-BHMPHM) with molecular weight of 640 and large molecular volume was designed and synthesized. The structure of monomer 5,5′-BHMPHM was confirmed by FT-IR, 1H-NMR and elemental analysis. Degree of double bond conversion, volume shrinkage, contact angle, water sorption and solubility, diffusion coefficient value, flexure strength and modulus of 5,5′-BHMPHM/tri(ethylene glycol) dimethacrylate (TEGDMA) based resin were measured. 2,2-bis[4-(2′-hydroxy-3′-methacryloyloxy-propoxy)-phenyl]-propane (Bis-GMA)/TEGDMA based resin was used as reference. The result illustrated that the double bond conversion, polymerization shrinkage, and diffusion coefficient value of 5,5′-BHMPHM/TEGDMA based resin were significantly lower than that of Bis-GMA/TEGDMA based resin (P < 0.05). Water sorption, solubility, flexure strength and modulus of 5,5′-BHMPHM/TEGDMA based resin were higher than that of Bis-GMA/TEGDMA based resin (P < 0.05). There was no statistical difference between 5,5′-BHMPHM/TEGDMA based resin and Bis-GMA/TEGDMA based resin in contact angle (P > 0.05).  相似文献   

10.
The objective of this study was to investigate the effects of naturally occurring amniotic fluid modified poly(d,l-lactic acid) (PDLLA) film on the culture of rat calvaria osteoblast. The characteristics of surfaces (both modified and control) were examined by contact angle measurement and electron spectroscopy for chemical analysis (XPS). Cell adhesion and proliferation were used to assess the cell behavior on modified films and control one. MTT assay was used to determine cell viability and alkaline phosphatase (ALP) activity was taken to evaluate differentiated cell function. Compared with the untreated films, cell adhesion of osteoblast was significantly higher (P < 0.05) than that found on control, and osteoblast proliferation was also greater than control one (P < 0.01) at the time interval of 4 and 7 days. Moreover, the alkaline phosphatase (ALP) activity exhibited statistic difference (P < 0.05) and cell viability demonstrated significant difference (P < 0.01) between amniotic fluid modified PDLLA films and control one. These results suggested that amniotic fluid was a suitable material when used to modify PDLLA in order to improve its biocompatibility.  相似文献   

11.
This study focuses on analyzing the effects of several factors on the rate of decay of inherent viscosity (iv) during hydrolytic degradation. The analysis was made for oriented PLLA, 96L/4D PLA and 80L/20D,L PLA. The analyzed polymers were found to have identical rate of iv loss (P < 0.05), given that the materials have otherwise similar initial material properties. The effect of the post-processing residual monomer was dose dependent, i.e. the higher the monomer content the faster the degradation (P < 0.05). Samples with a smaller diameter (1.1 mm) were found to have a faster rate of iv loss than the samples with a larger diameter (4 mm) (P < 0.05). A multiple linear regression analysis was used to create a five-component linear model to predict changes in the materials’ inherent viscosity. This model yielded accurate predictions during the initial stages of the hydrolytic degradation process where the iv loss was virtually linear.  相似文献   

12.
The aim of the study was to evaluate early osseointegration of the laser-treated and acid-etched implant surface after the installation in rabbit tibias for 4 weeks. A total of 56 screw-shaped implants were grouped as follows: group A: implants were turned surface; group B: implants were laser-treated surface; group C: implants were acid-etched; group D: Implants were laser-treated and acid-etched surface. After 4 weeks, the removal torques were: group A: 13.21 ± 11.30 Ncm; group B: 29.73 ± 8.32 Ncm; group C: 30.31 ± 9.45 Ncm; group D: 35.76 ± 7.58 Ncm; The averages of bone-to-implant contact (BIC) were as follows: group A: 27.30 ± 6.55%; group B: 38.00 ± 8.56%; group C: 42.71 ± 8.48%; group D: 49.71 ± 9.21%. The removal torque and bone-to-implant contact measurements yielded statistically significant differences between the treated groups and turned group (P < 0.05); The laser-treated and acid-etched surface achieved higher Bone-to-Implant Contact than the laser-treated surface (P < 0.05), but there was no statistically significant difference between the laser-treated and acid-etched surface and the acid-etched surface in bone-to-implant contact (P > 0.05). In the present study, it was concluded that the laser-treated and acid-etched implants had good osteoconductivity and was a potential material for dental implantation.  相似文献   

13.
The purpose of this study was to investigate the healing capacity within an 8-mm rabbit calvarial defect using a polycaprolactone (PCL)/poly(lactic-co-glycolic acid) (PLGA) scaffold blended with tri-calcium phosphate (TCP) that was constructed using solid freeform fabrication (SFF) technology. The PCL/PLGA/TCP scaffold showed a 37?% higher compressive strength and rougher surface than the PCL/PLGA scaffold. In animal experiments, new bone formation was analyzed using microcomputed tomography (micro-CT) and histological and histometric analyses. The PCL/PLGA/TCP groups had significantly greater neo-tissue areas as compared with the control groups at 4 and 8 weeks (P?<?0.05). The PCL/PLGA/TCP group had significantly greater bone density as compared with the control and PCL/PLGA groups at 4 and 8 weeks (P?<?0.005). The results of this study suggest that the PCL/PLGA/TCP scaffold fabricated using SFF technology is useful for recovering and enhancing new bone formation in bony defects in rabbits.  相似文献   

14.
Bone morphogenetic protein-2 (BMP-2) is a key bone morphogenetic protein, and poly(lactic-co-glycolic acid) (PLGA) has been widely used as scaffold for clinical use to carry treatment protein. In the previous studies, we have synthesized BMP-2-related peptide (P24) and found its capacity of inducing bone regeneration. In this research, we have synthesized a new amphiphilic peptide Ac-RADA RADA RADA RADA S[PO4]KIPKASSVPTELSAISTLYLDDD-CONH2 (RADA16-P24) with an assembly peptide RADA16-Ion the P24 item of BMP2 to form divalent ion-induced gelatin. Two methods of physisorption and chemical cross-linking were used to bind RADA16-P24 onto the surface of the copolymer PLGA to synthesize RADA16-P24–PLGA, and its capacity of attaching bone marrow stromal cells (BMSCs) was evaluated in vitro and inducing ectopic bone formation was examined in vivo. In vitro our results demonstrated that RADA16-P24–PLGA copolymer prepared by physisorbing or prepared by chemical cross-linking had a peptide binding rate of (2.0180 ± 0.5296)% or (10.0820 ± 0.8405)% respectively (P < 0.05). In addition the BMSCs proliferated vigorously in the RADA16-P24–PLGA biomaterials. Significantly the percentage of BMSCs attached to RADA16-P24–PLGA composite prepared by chemical cross-linking and physisorbing were (71.4 ± 7.5) % or (46.7 ± 5.8) % (P < 0.05). The in vivo study showed that RADA16-P24–PLGA chemical cross-linking could better induce ectopic bone formation compared with RADA16-P24–PLGA physisorbing and PLGA. It is concluded that the PLGA copolymer is a good RADA16-P24 carrier. This novel RADA16-P24–PLGA composite has strong osteogenic capability.  相似文献   

15.
The aim of this paper was to investigate the effect of carboxymethyl chitosan anti-adhesion solution on prevention of postsurgical adhesion. Forty adult male Wistar rats were randomly divided into three groups: 0.9 % normal saline solution (group A), hyaluronic acid gels (group B) and carboxymethyl chitosan anti-adhesion solution (group C). The animals were treated with normal saline, hyaluronic acid gels or carboxymethyl chitosan anti-adhesion solution at the time of surgery. After 2 or 3 weeks, the degree of adhesions and histological effects were determined. The adhesions in groups B and C were significantly decreased, and the levels of TGF-β1 and hydroxyproline in group C were significantly lower than that in group A (P < 0.05). The histopathology in group C showed fewer inflammatory cells and fibroblasts. Carboxymethyl chitosan anti-adhesion solution can effectively prevent postoperative adhesion which is a promising drug delivery system in the context of postsurgical anti-adhesion.  相似文献   

16.
The gastrointestinal (GI) endoscopy has become a standard diagnostic tool for GI ulcers and cancer. In this study we studied endoscopic application of epidermal growth factor-containing chitosan hydrogel (EGF-CS gel) for treatment of GI ulcer. We hypothesized that directional ulcer-coating using EGF-CS gel via endoscope would precipitate ulcer-healing. EGF-CS gel was directly introduced to the ulcer-region after ulceration in acetic acid-induced gastric ulcer (AAU) and mucosal resection-induced gastric ulcer (MRU) rabbit and pig models. The ulcer dimensions and mucosal thicknesses were estimated and compared with those in the control group. Healing efficacy was more closely evaluated by microscopic observation of the ulcer after histological assays. In the AAU model, the normalized ulcer size of the gel-treated group was 2.3 times smaller than that in the non-treated control group on day 3 after ulceration (P < 0.01). In the MRU model, the normalized ulcer size of the gel-treated group was 5.4 times smaller compared to that in the non-treated control group on day 1 after ulceration (P < 0.05). Histological analysis supported the ability of EGF-CS gel to heal ulcers. The present study suggests that EGF-CS gel is a promising candidate for treating gastric bleeding and ulcers.  相似文献   

17.
Silicon-substituted hydroxyapatite (Si-HA) coatings with 0.14 to 1.14 at.% Si on pure titanium were prepared by a biomimetic process. The microstructure characterization and the cell compatibility of the Si-HA coatings were studied in comparison with that of hydroxyapatite (HA) coating prepared in the same way. The prepared Si-HA coatings and HA coating were only partially crystallized or in nano-scaled crystals. The introduction of Si element in HA significantly reduced P and Ca content, but densified the coating. The atom ratio of Ca to (P + Si) in the Si-HA coatings was in a range of 1.61–1.73, increasing slightly with an increase in the Si content. FTIR results displayed that Si entered HA in a form of SiO4 unit by substituting for PO4 unit. The cell attachment test showed that the HA and Si-HA coatings exhibited better cell response than the uncoated titanium, but no difference was observed in the cell response between the HA coating and the Si-HA coatings. Both the HA coating and the Si-HA coatings demonstrated a significantly higher cell growth rate than the uncoated pure titanium (p < 0.05) in all incubation periods while the Si-HA coating exhibited a significantly higher cell growth rate than the HA coating (p < 0.05). Si-HA with 0.42 at.% Si presented the best cell biocompatibility in all of the incubation periods. It was suggested that the synthesis mode of HA and Si-HA coatings in a simulated body environment in the biomimetic process contribute significantly to good cell biocompatibility.  相似文献   

18.
Gelatin and chitosan are natural polymers that have extensively been used in tissue engineering applications. The present study aimed to evaluate the effectiveness of chitosan and gelatin or combination of the two biopolymers (chitosan–gelatin) as bone scaffold on bone regeneration process in an experimentally induced critical sized radial bone defect model in rats. Fifty radial bone defects were bilaterally created in 25 Wistar rats. The defects were randomly filled with chitosan, gelatin and chitosan–gelatin and autograft or left empty without any treatment (n?=?10 in each group). The animals were examined by radiology and clinical evaluation before euthanasia. After 8?weeks, the rats were euthanized and their harvested healing bone samples were evaluated by radiology, CT-scan, biomechanical testing, gross pathology, histopathology, histomorphometry and scanning electron microscopy. Gelatin was biocompatible and biodegradable in vivo and showed superior biodegradation and biocompatibility when compared with chitosan and chitosan–gelatin scaffolds. Implantation of both the gelatin and chitosan–gelatin scaffolds in bone defects significantly increased new bone formation and mechanical properties compared with the untreated defects (P?<?0.05). Combination of the gelatin and chitosan considerably increased structural and functional properties of the healing bones when compared to chitosan scaffold (P?<?0.05). However, no significant differences were observed between the gelatin and gelatin–chitosan groups in these regards (P?>?0.05). In conclusion, application of the gelatin alone or its combination with chitosan had beneficial effects on bone regeneration and could be considered as good options for bone tissue engineering strategies. However, chitosan alone was not able to promote considerable new bone formation in the experimentally induced critical-size radial bone defects.  相似文献   

19.
Random Laser emission at 1.06 μm, self-second-harmonic generation at 0.53 μm and self-sum-frequency generation at 0.46 μm were investigated in NdxY1.00−xAl3(BO3)4 nanocrystalline powders, for 0.05  x  1.00, excited by a pulsed laser operating at 808 nm, focusing on the interplay between the RL performance and the second-order nonlinear processes. The RL performance, characterized by a figure-of-merit relating the laser slope efficiency and the excitation pulse energy threshold, improved as x increased up to 1.00 while the efficiency of the self-frequency conversion processes reduced for increasing x because of distortions introduced in the crystalline structure of the grains. The RL wavelength was also dependent on the Nd3+ concentration and presented a redshift from 1061.9 nm to 1063.5 nm for increasing values of x.  相似文献   

20.
Over a period of five years, blood samples were taken from 1046 drivers killed as a result of a motor vehicle crash on New Zealand roads. These were analysed for the presence of alcohol and a range of both illicit drugs and psychoactive medicinal drugs. Driver culpability was determined for all crashes. The control group of drug- and alcohol-free drivers comprised 52.2% of the study population. Drivers positive for psychoactive drugs were more likely to be culpable (odds ratio (OR) 3.5, confidence interval (CI) 95% 2.4–5.2) than the control group. Driver culpability exhibited the expected positive association with alcohol use (OR 13.7, 95% CI 4.3–44) and with combined alcohol and cannabis use (OR 6.9, 95% CI 3.0–16). There was only a weak positive association between cannabis use (with no other drug) and culpability (OR 1.3, CI 95% 0.8–2.3). Furthermore, the OR for drivers with blood tetrahydrocannabinol (THC) concentrations greater than 5 ng/mL was lower (OR 1.0, CI 95% 0.4–2.4) than drivers with blood THC concentrations less than 2 ng/mL (OR 3.1, CI 95% 0.9–10). This is inconsistent with results reported by other studies where a significant increase in crash risk was found with blood THC levels greater than 5 ng/mL. In this study, there were very few drivers who had used a single drug, other than cannabis or alcohol. Therefore, from this study, it is not possible to comment on any relationship between opioid, stimulant or sedative drug use and an increased risk of being killed in a crash for the drivers using these drugs. The results from a multivariate analysis indicate that driver gender, age group and licence status, (= 0.022, = 0.016, = 0.026, respectively), the type of vehicle being driven (= 0.013), the number of vehicles in the crash (P < 0.001), the blood alcohol concentration of the driver (P < 0.001) and the use of any drug other than alcohol and cannabis (= 0.044), are all independently associated with culpability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号